Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 2000 Feb; 37(1): 28-33
Article in English | IMSEAR | ID: sea-28022

ABSTRACT

Pigeon liver fatty acid synthetase was inactivated by arginine modifying reagent, phenylglyoxal and 2,3-butanedione. The inactivation of overall fatty acid synthetase was accompanied by the loss of beta-ketoacyl reductase and enoyl-CoA reductase activity. The inactivation followed a pseudo-first order kinetics and sum of the second order rate constants for the two reductase reactions equaled that for the synthetase reaction. Inactivation of all three activities was prevented by NADPH or its analogs 2',5'-ADP and 2'-AMP but not by the corresponding nucleotides containing the 5'-phosphate. These results suggest that binding of NADPH to fatty acid synthetase involves specific interaction of the 2'-phosphate with the guanidino group of arginine residues at the active site of the two reductases. pH-Dependent inactivation by phenylglyoxal indicated that a group with a pka 7.5 is involved in the loss of enzyme activity. Stoichiometric results showed that 4 out of 164 arginine residues per enzyme molecule were essential for the enzyme activity.


Subject(s)
Animals , Arginine/chemistry , Columbidae , Fatty Acid Synthases/antagonists & inhibitors , Kinetics , Liver/enzymology , Protein Structure, Tertiary
2.
Indian J Biochem Biophys ; 1999 Apr; 36(2): 63-8
Article in English | IMSEAR | ID: sea-26717

ABSTRACT

Pigeon liver fatty acid synthetase (FAS) was inactivated irreversibly by stoichiometric concentration of o-phthalaldehyde exhibiting a bimolecular kinetic process. FAS-o-phthalaldehyde adduct gave a characteristic absorption maxima at 337 nm. Moreover this derivative showed fluorescence emission maxima at 412 nm when excited at 337 nm. These results were consistent with isoindole ring formation in which the -SH group of cysteine and epsilon-NH2 group of lysine participate in the reaction. The inactivation is caused by the reaction of the phosphopantetheine -SH group since it is protected by either acetyl- or malonyl-CoA. The enzyme incubated with iodoacetamide followed by o-phthalaldehyde showed no change in fluorescence intensity but decrease in intensity was found in the treatment of 2,4,6-trinitrobenzenesulphonic acid (TNBS), a lysine specific reagent with the enzyme prior to o-phthalaldehyde addition. As o-phthalaldehyde did not inhibit enoyl-CoA reductase activity, so nonessential lysine is involved in the o-phthalaldehyde reaction. Double inhibition experiments showed that 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a thiol specific reagent, binds to the same cysteine which is also involved in the o-phthalaldehyde reaction. Stoichiometric results indicated that 2 moles of o-phthalaldehyde were incorporated per mole of enzyme molecule upon complete inactivation.


Subject(s)
Animals , Columbidae , Fatty Acid Synthases/metabolism , Liver/metabolism , o-Phthalaldehyde/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL