Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Protein & Cell ; (12): 141-149, 2011.
Article in English | WPRIM | ID: wpr-757673

ABSTRACT

Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.


Subject(s)
Humans , Amino Acid Sequence , Amino Acid Substitution , DNA-Binding Proteins , Genetics , Metabolism , Mutation , Neurodegenerative Diseases , Pathology , Protein Structure, Tertiary , RNA-Binding Protein FUS , Chemistry , Genetics , Metabolism , Recombinant Proteins , Genetics , Metabolism , Toxicity , Saccharomyces cerevisiae , Metabolism , Sarcosine , Pharmacology , Thiazoles , Metabolism
2.
Protein & Cell ; (12): 477-486, 2011.
Article in English | WPRIM | ID: wpr-757074

ABSTRACT

Mutations in the Fused in sarcoma/Translated in liposarcoma gene (FUS/TLS, FUS) have been identified among patients with amyotrophic lateral sclerosis (ALS). FUS protein aggregation is a major pathological hallmark of FUS proteinopathy, a group of neurodegenerative diseases characterized by FUS-immunoreactive inclusion bodies. We prepared transgenic Drosophila expressing either the wild type (Wt) or ALS-mutant human FUS protein (hFUS) using the UAS-Gal4 system. When expressing Wt, R524S or P525L mutant FUS in photoreceptors, mushroom bodies (MBs) or motor neurons (MNs), transgenic flies show age-dependent progressive neural damages, including axonal loss in MB neurons, morphological changes and functional impairment in MNs. The transgenic flies expressing the hFUS gene recapitulate key features of FUS proteinopathy, representing the first stable animal model for this group of devastating diseases.


Subject(s)
Aged , Animals , Humans , Aging , Genetics , Metabolism , Pathology , Amyotrophic Lateral Sclerosis , Genetics , Metabolism , Pathology , Animals, Genetically Modified , Disease Models, Animal , Drosophila melanogaster , Genetics , Metabolism , Gene Expression , Microscopy, Electron, Scanning , Motor Neurons , Metabolism , Pathology , Mushroom Bodies , Metabolism , Pathology , Mutant Proteins , Genetics , Metabolism , Mutation , Photoreceptor Cells, Invertebrate , Metabolism , Pathology , Plasmids , RNA-Binding Protein FUS , Genetics , Metabolism , Recombinant Fusion Proteins , Genetics , Metabolism , Retinal Degeneration , Pathology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL