Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
Braz. j. med. biol. res ; 47(12): 1036-1043, 12/2014. graf
Article in English | LILACS | ID: lil-727657

ABSTRACT

Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.


Subject(s)
Animals , Cattle , Humans , Apoptosis/drug effects , Fibroblasts/drug effects , /pharmacology , Periodontal Ligament/cytology , Receptors, Immunologic/metabolism , Serum Albumin, Bovine/pharmacology , Cell Count , /metabolism , Cell Survival/drug effects , Diabetes Complications , Flow Cytometry , Fibroblasts/metabolism , Immunohistochemistry , In Situ Nick-End Labeling , Primary Cell Culture , Periodontal Diseases/complications , Periodontal Ligament/drug effects , Real-Time Polymerase Chain Reaction
2.
Braz. j. med. biol. res ; 46(10): 861-867, 24/set. 2013. graf
Article in English | LILACS | ID: lil-688556

ABSTRACT

Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.


Subject(s)
Animals , Male , Myocardial Reperfusion Injury/prevention & control , /physiology , Proto-Oncogene Proteins c-akt/physiology , Quercetin/pharmacology , Signal Transduction/physiology , Apoptosis/drug effects , In Situ Nick-End Labeling , Random Allocation , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL