Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Southern Medical University ; (12): 360-362, 2008.
Article in Chinese | WPRIM | ID: wpr-293377

ABSTRACT

Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.


Subject(s)
Catalysis , Enzymes, Immobilized , Metabolism , Hydrogen-Ion Concentration , Kinetics , Penicillanic Acid , Chemistry , Metabolism , Penicillin Amidase , Metabolism , Penicillin G , Chemistry , Metabolism , Phase Transition , Polymers , Chemistry , Substrate Specificity
2.
China Biotechnology ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-685594

ABSTRACT

Immobilized penicillin acylase was used for bioconversion of penicillin G into 6-APA in aqueous two-phase systems consisted of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB.Partition coefficients of 6-APA was found to be:about 5.78,in the presence of 1% NaCl.Enzyme kinetic showed that reaction reached equilibrium at 7h or so.The 6-APA mole yields were 85.3%(pH 7.8,and 20 ℃) and this value was about 20%higher than control in reaction of single aqueous phase buffer.Partition coefficient of penicillin G(Na) washardly changeable,while partition coefficient of product,6-APA and phenylacetate acid was significantly changeable.Reason is due to Donnan effect of phase systems andhydrophobicity of products.The change of partition coefficients of products also affects bioconversion yield of products.In the aqueous two-phase systems,substrate,penicillin G,products 6-APA and phenylacetate acid are biased in top phase,while immobilized penicillin acylase is completely partitioned in bottom.Substrate,penicillin G enters into bottom phase,and it is catalyzed into 6-APA and phenylacetate acid,then the products enter into top phase.Finally,inhibition of substrate and products is removed to result in improvement of products yield.Moreover,immobilized enzymehashigher efficiency than immobilized cells and occupy smaller volume.Comparing with free enzyme,immobilized enzymehashigher stability,longer use life,completely partitioned in bottom phase and recycle.Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage.The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtrated 450 nm light,while pH-sensitive polymer PADB could be recovered by isoelectric point(pH 4.1).The recovery of the two copolymers was 95%~99%.

SELECTION OF CITATIONS
SEARCH DETAIL