Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Asian Spine Journal ; : 340-348, 2021.
Article in English | WPRIM | ID: wpr-897293

ABSTRACT

Study DesignThis retrospective case series enrolled 13 patients who underwent posterior fixation with both transdiscal screws for diffuse idiopathic skeletal hyperostosis (TSDs) and pedicle screws (PSs) to treat spinal injury accompanied by diffuse idiopathic skeletal hyperostosis (DISH).PurposeTo describe the usefulness, feasibility, and biomechanics of TSD.Overview of LiteratureVertebral bodies accompanied by DISH generally have lower bone mineral density than normal vertebral bodies because of the stress shielding effect. This phenomenon tends to makes screw fixation challenging. To our knowledge, solutions for this issue have not previously been reported.MethodsPatients were assessed using the data on surgical time, estimated intraoperative blood loss, mean number of stabilized intervertebral segments, number of screws used, perioperative complications, union rate, and the three-level EuroQol five-dimensional questionnaire (EQ5D-3L) score at the final follow-up. The Hounsfield unit (HU) values of the screw trajectory area, and the actual intraoperative screw insertion torque of TSDs and PSs were also analyzed and compared.ResultsThe surgical time and estimated intraoperative blood loss were 165.9±45.5 minutes and 71.0±53.4 mL, respectively. The mean number of stabilized intervertebral segments was 4.6±1.0. The number of screws used was 4.9±1.3 for TSDs and 3.0±1.4 for PSs. One death occurred after surgery. The union rate and EQ5D-3L scores were 100% and 0.608±0.128, respectively. The HU value and actual intraoperative screw insertion torque of TSDs were significantly better than those of PSs (pp=0.033).ConclusionsWe were able to achieve stable surgical outcomes using the combination of TSDs and PSs. The HU value and actual intraoperative screw insertion torque were significantly higher for TSDs than for PSs. Based on these results, when treating thoracolumbar spinal fractures accompanied by DISH in elderly populations, the TSD could be a stronger anchor than the PS.

2.
Asian Spine Journal ; : 566-574, 2021.
Article in English | WPRIM | ID: wpr-913675

ABSTRACT

Methods@#Total 1,200 nonlinear FEA with various screw diameters (4.5–7.5 mm) and lengths (30–50 mm) were performed on 25 patients (seven men and 18 women; mean age, 75.2±10.8 years) with osteoporosis. The axial pullout strength, and the vertebral fixation strength of a paired-screw construct against flexion, extension, lateral bending, and axial rotation were examined. Thereafter, we calculated the equivalent stress of the bone-screw interface during nondestructive loading. Then, using diameter parameters (screw diameter or screw fitness in the pedicle [%fill]), and length parameters (screw length or screw depth in the vertebral body [%length]), multiple regression analyses were performed in order to evaluate the factors affecting various fixations. @*Results@#Larger diameter and longer screws significantly increased the pullout strength and vertebral fixation strength; further, they decreased the equivalent stress around the screws. Multiple regression analyses showed that the actual screw diameter and %length were factors that had a stronger effect on the fixation strength than %fill and the actual screw length. Screw diameter had a greater effect on the resistance to screw pullout and flexion and extension loading (β =0.38–0.43, p <0.01); while the %length had a greater effect on resistance to lateral bending and axial rotation loading (β =0.25–0.36, p <0.01) as well as mechanical stress of the bone-screw interface (β =−0.42, p <0.01). @*Conclusions@#The screw size should be determined based on the biomechanical behavior of the screws, type of mechanical force applied on the corresponding vertebra, and anatomical limitations.

3.
Asian Spine Journal ; : 340-348, 2021.
Article in English | WPRIM | ID: wpr-889589

ABSTRACT

Study DesignThis retrospective case series enrolled 13 patients who underwent posterior fixation with both transdiscal screws for diffuse idiopathic skeletal hyperostosis (TSDs) and pedicle screws (PSs) to treat spinal injury accompanied by diffuse idiopathic skeletal hyperostosis (DISH).PurposeTo describe the usefulness, feasibility, and biomechanics of TSD.Overview of LiteratureVertebral bodies accompanied by DISH generally have lower bone mineral density than normal vertebral bodies because of the stress shielding effect. This phenomenon tends to makes screw fixation challenging. To our knowledge, solutions for this issue have not previously been reported.MethodsPatients were assessed using the data on surgical time, estimated intraoperative blood loss, mean number of stabilized intervertebral segments, number of screws used, perioperative complications, union rate, and the three-level EuroQol five-dimensional questionnaire (EQ5D-3L) score at the final follow-up. The Hounsfield unit (HU) values of the screw trajectory area, and the actual intraoperative screw insertion torque of TSDs and PSs were also analyzed and compared.ResultsThe surgical time and estimated intraoperative blood loss were 165.9±45.5 minutes and 71.0±53.4 mL, respectively. The mean number of stabilized intervertebral segments was 4.6±1.0. The number of screws used was 4.9±1.3 for TSDs and 3.0±1.4 for PSs. One death occurred after surgery. The union rate and EQ5D-3L scores were 100% and 0.608±0.128, respectively. The HU value and actual intraoperative screw insertion torque of TSDs were significantly better than those of PSs (pp=0.033).ConclusionsWe were able to achieve stable surgical outcomes using the combination of TSDs and PSs. The HU value and actual intraoperative screw insertion torque were significantly higher for TSDs than for PSs. Based on these results, when treating thoracolumbar spinal fractures accompanied by DISH in elderly populations, the TSD could be a stronger anchor than the PS.

SELECTION OF CITATIONS
SEARCH DETAIL