Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Indian J Physiol Pharmacol ; 2007 Oct-Dec; 51(4): 361-7
Article in English | IMSEAR | ID: sea-107949

ABSTRACT

Bee's wax produced by honeybees is rich in polyphenols. As the polyphenols are thought to protect cell constituents against oxidative damage through scavenging of free radicals, the present work was undertaken to evaluate the effects of polyphenols extracted from bees wax on the oxidative stress induced by carbon tetrachloride (CCl4) in rats. The polyphenols extracted by 80% methanol from bee wax (PBW) were fed to Wistar rats at 100 mg/kg body weight and 200 mg/kg body weight for 14 days in order to study its antioxidative and antihepatotoxic effects against CCl4 (1.5 ml/kg body weight)-induced stress. On 15th day all the rats were sacrificed, blood was collected for serum and organs/tissues were excised for biochemical analysis. The results showed a significant decrease in hepatic antioxidant enzyme activities viz. catalase, glucose-6-phosphate dehydrogenase (G-6-PDH), glutathione peroxidase (GSH-Px), glutathione reductase, superoxide dismutase (SOD) and a significant increase in glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (GGT) by CCl4, probably due to the peroxidative effects. The prophylactic use of PBW at 200 mg/kg level resulted in a significant increase in CCl4-induced reduction in catalase, G-6-PDH, GSSGR and SOD. The hepatic levels of lipid peroxides viz. malondialdehyde, conjugated dienes and lipid hydroperoxides, enhanced by the administration of CCl4 were brought down by the ingestion of PBW at a level of 200 mg/kg. The hepatotoxicity caused by the administration of CCl4 was reduced significantly. Hence, it is concluded that the polyphenols from bees wax exhibit hepatoprotective and antioxidative properties in


Subject(s)
Animals , Carbon Tetrachloride , Flavonoids/pharmacology , Glutathione/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Male , Oxidative Stress/drug effects , Phenols/pharmacology , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Waxes/chemistry
2.
Indian J Exp Biol ; 2001 Jun; 39(6): 558-63
Article in English | IMSEAR | ID: sea-60230

ABSTRACT

Effects of photodynamic treatments on inherent antioxidant metabolites and cellular defence enzymes have been investigated in rats. Wistar rats were grouped into untreated controls, light controls, hematoporphyrin derivative (Hpd) (treated with 5 and 10 mg Hpd/kg body weight and kept in dark) and sets treated with both Hpd and red light (dose 172 and 344 j/m2 ). After 2, 24, 48 and 72 hr of Hpd injection the rats sacrificed, livers quickly excised to analyze Hpd uptake, activities of enzymes like catalase, GSH-Px and antioxidants like GSH, vitamin A, vitamin E and vitamin C. The results showed that the loss of Hpd from liver as a function of post- injection time was non- linear. An increased generation of lipid radicals was observed in the groups treated with 5 mg Hpd and higher dose of light and in groups treated with 10 mg Hpd at both the doses of light. Combination of light and Hpd reduced hepatic GSH content with a concomitant reduction in GSH-Px. At higher doses of Hpd and light, there was a significant reduction in hepatic vitamin A levels. Combination of Hpd and light in all doses reduced vitamin E content in liver. The decreased biological antioxidant contents and GSH-Px may be attributed to their utilization for the scavenging of free radicals generated by Hpd and light in tissues. However, no change in catalase activity and vitamin C content in liver was noted in experimental rats. The results suggest that exposure to higher doses of Hpd with light alters oxidant stress system and TBARS content in rat.


Subject(s)
Animals , Antioxidants/pharmacology , Hematoporphyrin Derivative/pharmacokinetics , Liver/metabolism , Male , Photochemotherapy , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Vitamins/metabolism
3.
Indian J Exp Biol ; 1997 Apr; 35(4): 356-60
Article in English | IMSEAR | ID: sea-57209

ABSTRACT

Effects of photofrin II (PII) and light on the intra cellular nucleotide levels have been investigated using BHK-21 cell line. Results indicate that lower concentrations of photofrin II in dark increases ATP levels in a non linear manner, however, there has been no change in energy charge and levels of other nucleotides. Photoirradiation of PII-treated cells leads to a significant reduction in ATP levels and energy charge along with an increase in ATP breakdown products like ADP and AMP. The phosphorylation potential [ATP]/[ADP][Pi] also reduces upon photoirradiation of PII treated cells. Incubation conditions like pH of the medium and temperature modulate the cellular responses to a great extent.


Subject(s)
Adenine Nucleotides/metabolism , Animals , Cell Line , Cricetinae , Dihematoporphyrin Ether/pharmacology , Energy Metabolism/drug effects , Hydrogen-Ion Concentration , Light , Photochemotherapy , Temperature
4.
Indian J Exp Biol ; 1997 Apr; 35(4): 348-55
Article in English | IMSEAR | ID: sea-58195

ABSTRACT

Hematoporphyrin derivative, a drug used in the photodynamic therapy of solid tumours was synthesized in the laboratory and was called Hpd(L). Physico-chemical and biological properties of this drug have been compared with Photofrin II, the commercially available drug. Both Hpd(L) and Photofrin II possess similar properties qualitatively. Quantitatively, Hpd(L) was half as active as Photofrin II in its efficacy in causing photodynamic cytotoxicity or in the optical densities at the absorption peaks. These differences could be due to the differences in the compositions. Hpd(L) is a non-purified complex mixture of a number of porphyrin derivatives whereas Photofrin II is a relatively purer compound consisting of di- and tri-hematoporphyrins linked through ether or ester bonds. In vitro cellular uptake and retention of these drugs has been found to be a passive process not involving energy expenditure. pH and temperature of the incubation media have been found to profoundly influence these processes, while a complex relation seems to exist between physiological state of a cell and accumulation of these photosensitizers.


Subject(s)
Animals , Antimetabolites/pharmacology , Biological Transport, Active/drug effects , Cell Line , Cricetinae , Dihematoporphyrin Ether/chemistry , Hematoporphyrin Derivative/chemistry , Hydrogen-Ion Concentration , Kinetics , Photochemotherapy , Photosensitizing Agents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL