Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Legal Medicine ; : 62-70, 2018.
Article in Korean | WPRIM | ID: wpr-740672

ABSTRACT

This study was conducted to investigate whether memory accuracy can be assessed by analyzing electrophysiological responses (i.e., electroencephalography [EEG]) for retrieval cues related to the witnessed scene. Specifically, we examined the different patterns of EEG signals recorded during witnessed (target) and unwitnessed (lure) stimuli using event-related potential (ERP) analysis. Moreover, using multivariate pattern analysis, we also assessed how accurately single-trial EEG signals can classify target and lure stimuli. Participants watched a staged-crime video (theft crime), and the EEG signals evoked by the objects shown in the video were analyzed (n=56). Compared to the target stimulus, the lure stimulus elicited larger negative ERPs in frontal brain regions 300 to 500 milliseconds after the retrieval cue was presented. Furthermore, the EEG signals observed 450 to 500 milliseconds after the retrieval cue was presented showed the best classification performance related to eyewitness memory, with the mean classification accuracy being 56%. These results suggest that the knowledge and techniques of cognitive neuroscience can be used to estimate eyewitness memory accuracy.


Subject(s)
Brain , Classification , Cognitive Neuroscience , Cues , Electroencephalography , Evoked Potentials , Machine Learning , Memory
2.
Korean Journal of Legal Medicine ; : 62-70, 2018.
Article in Korean | WPRIM | ID: wpr-917777

ABSTRACT

This study was conducted to investigate whether memory accuracy can be assessed by analyzing electrophysiological responses (i.e., electroencephalography [EEG]) for retrieval cues related to the witnessed scene. Specifically, we examined the different patterns of EEG signals recorded during witnessed (target) and unwitnessed (lure) stimuli using event-related potential (ERP) analysis. Moreover, using multivariate pattern analysis, we also assessed how accurately single-trial EEG signals can classify target and lure stimuli. Participants watched a staged-crime video (theft crime), and the EEG signals evoked by the objects shown in the video were analyzed (n=56). Compared to the target stimulus, the lure stimulus elicited larger negative ERPs in frontal brain regions 300 to 500 milliseconds after the retrieval cue was presented. Furthermore, the EEG signals observed 450 to 500 milliseconds after the retrieval cue was presented showed the best classification performance related to eyewitness memory, with the mean classification accuracy being 56%. These results suggest that the knowledge and techniques of cognitive neuroscience can be used to estimate eyewitness memory accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL