Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Korean Circulation Journal ; : 499-518, 2023.
Article in English | WPRIM | ID: wpr-1002003

ABSTRACT

Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.

2.
Korean Circulation Journal ; : 367-386, 2023.
Article in English | WPRIM | ID: wpr-977159

ABSTRACT

Ischemic heart disease remains the primary cause of morbidity and mortality worldwide.Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function.Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart’s limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.

3.
Korean Circulation Journal ; : 97-113, 2021.
Article in English | WPRIM | ID: wpr-893893

ABSTRACT

Mesenchymal stem cells (MSCs) represent a population of adult stem cells residing in many tissues, mainly bone marrow, adipose tissue, and umbilical cord. Due to the safety and availability of standard procedures and protocols for isolation, culturing, and characterization of these cells, MSCs have emerged as one of the most promising sources for cell-based cardiac regenerative therapy. Once transplanted into a damaged heart, MSCs release paracrine factors that nurture the injured area, prevent further adverse cardiac remodeling, and mediate tissue repair along with vasculature. Numerous preclinical studies applying MSCs have provided significant benefits following myocardial infarction. Despite promising results from preclinical studies using animal models, MSCs are not up to the mark for human clinical trials. As a result, various approaches have been considered to promote the therapeutic potency of MSCs, such as genetic engineering, physical treatments, growth factor, and pharmacological agents. Each strategy has targeted one or multi-potentials of MSCs. In this review, we will describe diverse approaches that have been developed to promote the therapeutic potential of MSCs for cardiac regenerative therapy. Particularly, we will discuss major characteristics of individual strategy to enhance therapeutic efficacy of MSCs including scientific principles, advantages, limitations, and improving factors. This article also will briefly introduce recent novel approaches that MSCs enhanced therapeutic potentials of other cells for cardiac repair.

4.
Korean Circulation Journal ; : 97-113, 2021.
Article in English | WPRIM | ID: wpr-901597

ABSTRACT

Mesenchymal stem cells (MSCs) represent a population of adult stem cells residing in many tissues, mainly bone marrow, adipose tissue, and umbilical cord. Due to the safety and availability of standard procedures and protocols for isolation, culturing, and characterization of these cells, MSCs have emerged as one of the most promising sources for cell-based cardiac regenerative therapy. Once transplanted into a damaged heart, MSCs release paracrine factors that nurture the injured area, prevent further adverse cardiac remodeling, and mediate tissue repair along with vasculature. Numerous preclinical studies applying MSCs have provided significant benefits following myocardial infarction. Despite promising results from preclinical studies using animal models, MSCs are not up to the mark for human clinical trials. As a result, various approaches have been considered to promote the therapeutic potency of MSCs, such as genetic engineering, physical treatments, growth factor, and pharmacological agents. Each strategy has targeted one or multi-potentials of MSCs. In this review, we will describe diverse approaches that have been developed to promote the therapeutic potential of MSCs for cardiac regenerative therapy. Particularly, we will discuss major characteristics of individual strategy to enhance therapeutic efficacy of MSCs including scientific principles, advantages, limitations, and improving factors. This article also will briefly introduce recent novel approaches that MSCs enhanced therapeutic potentials of other cells for cardiac repair.

SELECTION OF CITATIONS
SEARCH DETAIL