Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Korean Journal of Anesthesiology ; : 350-354, 2021.
Article in English | WPRIM | ID: wpr-901724

ABSTRACT

Background@# Coronavirus disease (COVID-19)-associated coagulopathy is most often characterized by elevated D-dimer, interleukin-6, and plasma fibrinogen concentrations as well as hypercoagulability in thromboelastometry with increased clot firmness in the EXTEM, INTEM, and FIBTEM assays. Clinically, it manifests with a very high incidence of thrombosis, particularly in the pulmonary system, whereas bleeding complications are infrequent.Case: Here, we describe two critically ill patients with COVID-19 admitted to our intensive care unit demonstrating different thromboelastometry and biomarker patterns. One patient presented with hypercoagulability and the other patient with hypocoagulability and fibrinolysis shutdown in thromboelastometry. The pathophysiology and the potential impact on treatment options are discussed. @*Conclusions@# A combination of biomarkers and thromboelastometry results can be helpful in the future to decide which therapeutic strategy might be most appropriate for critically ill patients with COVID-19. This would be an important step to establish precision medicine in this high-risk patient population.

2.
Korean Journal of Anesthesiology ; : 91-102, 2021.
Article in English | WPRIM | ID: wpr-901697

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is currently recognized as a global health crisis. This viral infection is frequently associated with hypercoagulability, with a high incidence of thromboembolic complications that can be fatal. In many situations, the standard coagulation tests (SCT) fail to detect this state of hypercoagulability in patients with COVID-19 since clotting times are either not or only mildly affected. The role of viscoelastic tests such as rotational thromboelastometry (ROTEM®) during this pandemic is explored in this review. COVID-19-associated coagulopathy, as measured using the rotational thromboelastometry parameters, can vary from hypercoagulability due to increased fibrin polymerization and decreased fibrinolysis to bleeding from hypocoagulability. The use of a multimodal diagnostic and monitoring approach, including both rotational thromboelastometry and SCT, such as plasma fibrinogen and D-dimer concentrations, is recommended. Rotational thromboelastometry provides comprehensive information about the full coagulation status of each patient and detects individual variations. Since COVID-19-associated coagulopathy is a very dynamic process, the phenotype can change during the course of infection and in response to anticoagulation therapy. Data from published literature provide evidence that the combination of rotational thromboelastometry and SCT analysis is helpful in detecting hemostasis issues, guiding anticoagulant therapy, and improving outcomes in COVID-19 patients. However, more research is needed to develop evidence-based guidelines and protocols.

3.
Korean Journal of Anesthesiology ; : 350-354, 2021.
Article in English | WPRIM | ID: wpr-894020

ABSTRACT

Background@# Coronavirus disease (COVID-19)-associated coagulopathy is most often characterized by elevated D-dimer, interleukin-6, and plasma fibrinogen concentrations as well as hypercoagulability in thromboelastometry with increased clot firmness in the EXTEM, INTEM, and FIBTEM assays. Clinically, it manifests with a very high incidence of thrombosis, particularly in the pulmonary system, whereas bleeding complications are infrequent.Case: Here, we describe two critically ill patients with COVID-19 admitted to our intensive care unit demonstrating different thromboelastometry and biomarker patterns. One patient presented with hypercoagulability and the other patient with hypocoagulability and fibrinolysis shutdown in thromboelastometry. The pathophysiology and the potential impact on treatment options are discussed. @*Conclusions@# A combination of biomarkers and thromboelastometry results can be helpful in the future to decide which therapeutic strategy might be most appropriate for critically ill patients with COVID-19. This would be an important step to establish precision medicine in this high-risk patient population.

4.
Korean Journal of Anesthesiology ; : 91-102, 2021.
Article in English | WPRIM | ID: wpr-893993

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is currently recognized as a global health crisis. This viral infection is frequently associated with hypercoagulability, with a high incidence of thromboembolic complications that can be fatal. In many situations, the standard coagulation tests (SCT) fail to detect this state of hypercoagulability in patients with COVID-19 since clotting times are either not or only mildly affected. The role of viscoelastic tests such as rotational thromboelastometry (ROTEM®) during this pandemic is explored in this review. COVID-19-associated coagulopathy, as measured using the rotational thromboelastometry parameters, can vary from hypercoagulability due to increased fibrin polymerization and decreased fibrinolysis to bleeding from hypocoagulability. The use of a multimodal diagnostic and monitoring approach, including both rotational thromboelastometry and SCT, such as plasma fibrinogen and D-dimer concentrations, is recommended. Rotational thromboelastometry provides comprehensive information about the full coagulation status of each patient and detects individual variations. Since COVID-19-associated coagulopathy is a very dynamic process, the phenotype can change during the course of infection and in response to anticoagulation therapy. Data from published literature provide evidence that the combination of rotational thromboelastometry and SCT analysis is helpful in detecting hemostasis issues, guiding anticoagulant therapy, and improving outcomes in COVID-19 patients. However, more research is needed to develop evidence-based guidelines and protocols.

5.
Korean Journal of Anesthesiology ; : 297-322, 2019.
Article in English | WPRIM | ID: wpr-759554

ABSTRACT

Rotational thromboelastometry (ROTEM) is a point-of-care viscoelastic method and enables to assess viscoelastic profiles of whole blood in various clinical settings. ROTEM-guided bleeding management has become an essential part of patient blood management (PBM) which is an important concept in improving patient safety. Here, ROTEM testing and hemostatic interventions should be linked by evidence-based, setting-specific algorithms adapted to the specific patient population of the hospitals and the local availability of hemostatic interventions. Accordingly, ROTEM-guided algorithms implement the concept of personalized or precision medicine in perioperative bleeding management (‘theranostic’ approach). ROTEM-guided PBM has been shown to be effective in reducing bleeding, transfusion requirements, complication rates, and health care costs. Accordingly, several randomized-controlled trials, meta-analyses, and health technology assessments provided evidence that using ROTEM-guided algorithms in bleeding patients resulted in improved patient's safety and outcomes including perioperative morbidity and mortality. However, the implementation of ROTEM in the PBM concept requires adequate technical and interpretation training, education and logistics, as well as interdisciplinary communication and collaboration.


Subject(s)
Humans , Cooperative Behavior , Education , Health Care Costs , Hemorrhage , Interdisciplinary Communication , Methods , Mortality , Organization and Administration , Patient Safety , Point-of-Care Systems , Precision Medicine , Technology Assessment, Biomedical , Thrombelastography
SELECTION OF CITATIONS
SEARCH DETAIL