Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-170263

ABSTRACT

Background & objectives: Genetic factors have potential of predicting response to antidepressants in patients with major depressive disorder (MDD). In this study, an attempt was made to find an association between response to escitalopram in patients with MDD, and serotonin transporter (SLC6A4) and receptor (5HTR1A, 5HTR2A) polymorphisms. Methods: Fifty five patients diagnosed as suffering from MDD, were selected for the study. The patients were treated with escitalopram over a period of 6-8 wk. Severity of depression, response to treatment and side effects were assessed using standardised instruments. Genetic variations from HTR1A (rs6295), HTR2A (rs6311 and rs6313) and SLC6A4 (44 base-pair insertion/deletion at 5-HTTLPR) were genotyped. The genetic data of the responders and non-responders were compared to assess the role of genetic variants in therapeutic outcome. Results: Thirty six (65.5%) patients responded to treatment, and 19 (34.5%) had complete remission. No association was observed for genotype and allelic frequencies of single nucleotide polymorphisms (SNPs) among remitter/non-remitter and responder/non-responder groups, and six most common side-effects, except memory loss which was significantly associated with rs6311 (p=0.03). Interpretation & conclusions: No significant association was found between the SNPs analysed and response to escitalopram in patients with MDD though a significant association was seen between the side effect of memory loss and rs6311. Studies with larger sample are required to find out genetic basis of antidepressant response in Indian patients.

3.
Indian J Hum Genet ; 2011 May; 17(Suppl 1): 4-11
Article in English | IMSEAR | ID: sea-138978

ABSTRACT

Epilepsy is one of the most prevalent neurological disorders, afflicting approximately 50 million Indians. Owing to affordability and easy availability, use of first-generation antiepileptic drugs (AEDs) is heavily encouraged for the treatment of epilepsy in resource-limited countries such as India. Although first-generation AEDs are at par with second-generation AEDs in terms of efficacy, adverse drug reactions (ADRs) are quite common with them. This could be attributed to the inferior pharmacokinetic parameters such as nonlinear metabolism, narrow therapeutic index and formation of toxic intermediates. In addition, epilepsy patients may differ in the pharmacokinetic and pharmacodynamic profiles, with about 1/3rd of the population failing to respond to treatment. A proportion of this interindividual variability in response may be explained by genetic heterogeneity in the activity and expression of the network of proteins such as metabolizing enzymes, transporters and targets of AEDs. Over the last two decades, a considerable effort has been made by the scientific community for unraveling this genetic basis of variable response to AEDs. However, there have been inconsistencies in such genetic association studies conducted across different territories of the world. There could be several reasons underlying the poor replicability of these studies, mainly nonuniform phenotypic definitions, poor sample size and interethnic variability. In the present review article, we provide an overview of heterogeneity in study designs for conducting pharmacogenetic studies. In addition, critical recommendations required for overcoming such challenges imposed by pharmacogenetic epidemiological studies have been briefly discussed.


Subject(s)
Epilepsy/epidemiology , Epilepsy/genetics , Humans , India , Pharmacogenetics/methods , Pharmacokinetics , Phenotype , Research Design/methods , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL