Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Radiation Oncology Journal ; : 233-241, 2015.
Article in English | WPRIM | ID: wpr-73633

ABSTRACT

PURPOSE: To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. MATERIALS AND METHODS: Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. RESULTS: The conformity index was 1.05 +/- 0.02 for the CyberKnife plan, and 1.13 +/- 0.10 for the RapidArc plan. The homogeneity index was 1.23 +/- 0.01 for the CyberKnife plan, and 1.10 +/- 0.03 for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of V1 and V3. The normalized volumes of V60 for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. CONCLUSION: CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body.


Subject(s)
Humans , Carcinoma, Hepatocellular , Liver , Prescriptions , Radiosurgery , Radiotherapy, Intensity-Modulated
2.
Journal of Korean Medical Science ; : 1055-1061, 2015.
Article in English | WPRIM | ID: wpr-23734

ABSTRACT

This study evaluated the incidence of hepatic toxicity after stereotactic ablative radiotherapy (SABR) using 3 fractions to the liver, and identified the predictors for hepatic toxicity. We retrospectively reviewed 78 patients with primary and metastatic liver cancers, who underwent SABR using 3 fractions between 2003 and 2011. To examine the incidence of hepatic toxicity, we defined newly developed hepatic toxicity> or =grade 2 according to the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 within 3 months after the end of SABR as a significant adverse event. To identify the predictors for hepatic toxicity, we analyzed several clinical and dosimetric parameters (rV(5Gy)-rV(35Gy): normal liver volume receiving or =grade 2 occurred in 10 patients (13%): grade 2 in 9 patients and grade 3 in 1 patient. On univariate analysis, baseline Child-Pugh (CP) score (5 vs. 6-8), normal liver volume, and planning target volume were the significant clinical predictors. All dosimetric parameters were significant: rV(20Gy) was the most significant predictor. On multivariate analysis, baseline CP score (hazard ratio, 0.026; P=0.001) was the only significant predictor. In conclusion, SABR using 3 fractions in primary and metastatic liver cancers produces low hepatic toxicity, especially in patients with a baseline CP score of 5. However, further studies are needed to minimize hepatic toxicity in patients with baseline CP scores> or =6.


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Dose Fractionation, Radiation , Hepatitis/etiology , Liver Neoplasms/complications , Neoplasm Metastasis , Radiation Injuries/etiology , Radiosurgery/adverse effects , Radiotherapy Dosage , Treatment Outcome
3.
Radiation Oncology Journal ; : 163-169, 2014.
Article in English | WPRIM | ID: wpr-209402

ABSTRACT

PURPOSE: To report the results of stereotactic body radiotherapy (SBRT) for unresectable primary or recurrent cholangiocarcinoma. MATERIALS AND METHODS: From January 2005 through August 2013, 58 patients with unresectable primary (n = 28) or recurrent (n = 30) cholangiocarcinoma treated by SBRT were retrospectively analyzed. The median prescribed dose was 45 Gy in 3 fractions (range, 15 to 60 Gy in 1-5 fractions). Patients were treated by SBRT only (n = 53) or EBRT + SBRT boost (n = 5). The median tumor volume was 40 mL (range, 5 to 1,287 mL). RESULTS: The median follow-up duration was 10 months (range, 1 to 97 months). The 1-year, 2-year overall survival rates, and median survival were 45%, 20%, and 10 months, respectively. The median survival for primary group and recurrent group were 5 and 13 months, respectively. Local control rate at 1-year and 2-year were 85% and 72%, respectively. Disease progression-free survival rates at 1-year and 2-year were 26% and 23%, respectively. In univariate analysis, ECOG performance score (0-1 vs. 2-3), treatment volume ( or =50 mL), and pre-SBRT CEA level ( or =5 ng/mL) were significant in overall survival rate. In multivariate analysis, ECOG score (p = 0.037) and tumor volume (p = 0.030) were statistically significant. In the recurrent tumor group, patients with >12 months interval from surgery to recurrence showed statistically significant higher overall survival rate than those with or =grade 3 complications. CONCLUSION: SBRT can be considered as an effective local modality for unresectable primary or recurrent cholangiocarcinoma.


Subject(s)
Humans , Cholangiocarcinoma , Disease-Free Survival , Follow-Up Studies , Multivariate Analysis , Radiosurgery , Recurrence , Retrospective Studies , Survival Rate , Tumor Burden
4.
Journal of Korean Medical Science ; : 213-219, 2013.
Article in English | WPRIM | ID: wpr-25355

ABSTRACT

The purpose of this study was to assess the feasibility and efficacy of stereotactic ablative radiotherapy (SABR) for liver tumor in patients with Barcelona Clinic Liver Cancer (BCLC)-C stage hepatocellular carcinoma (HCC). We retrospectively reviewed the medical records of 35 patients between 2003 and 2011. Vascular invasion was diagnosed in 32 patients, extrahepatic metastases in 11 and both in 8. Thirty-two patients were categorized under Child-Pugh (CP) class A and 3 patients with CP class B. The median SABR dose was 45 Gy (range, 30-60 Gy) in 3-5 fractions. The median survival time was 14 months. The 1- and 3-yr overall survival (OS) rate was 52% and 21%, respectively. On univariate analysis, CP class A and biologically equivalent dose > or = 80 Gy10 were significant determinants of better OS. Severe toxicity above grade 3, requiring prompt therapeutic intervention, was observed in 5 patients. In conclusion, SABR for BCLC-C stage HCC showed 1-yr OS rate of 52% but treatment related toxicity was moderate. We suggest that patients with CP class A are the best candidate and at least SABR dose of 80 Gy10 is required for BCLC-C stage.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Carcinoma, Hepatocellular/mortality , Feasibility Studies , Follow-Up Studies , Liver Failure/etiology , Liver Neoplasms/mortality , Myelitis/etiology , Neoplasm Staging , Prognosis , Radiation Dosage , Retrospective Studies , Severity of Illness Index , Stereotaxic Techniques , Survival Rate
5.
Korean Journal of Medical Physics ; : 198-205, 2011.
Article in Korean | WPRIM | ID: wpr-153493

ABSTRACT

Gamma irradiator is widely used for cell, animal experiment, irradiation for blood, dose measurement, and education. Biobeam8000 gamma irradiator (STS Steuerungstechnik &. Strahlenschutz GmbH, Braunschweig, Germany, Cs137, 81.4 TBq) that KIRAMS (Korea Institute of Radiological and Medical Science) has is a irradiation device that enables to be used in large-capacity of 7.5 L and extensive area. Cs-137 source moves range of 24 cm back-and-forth in a regular cycle in beaker for uniform irradiation and a beaker that puts a specimen like existing radiation irradiator such as Gammacell3000 rotates 360degrees during irradiation. Precise dose information according to the location of radiation source would be needed because of the movement of radiation source, whereas radiation could be uniformly irradiated in comparison with existing gamma irradiator. In this study, dose distribution of the inside beaker located in Biomeam8000 gamma irradiator was measured using glass dosimeter, and dose evaluation and distribution regarding dose linearity and dose reproducibility were implemented based on measurement results. This aims to show guideline for efficient use of irradiator based on measurement result when doing experiment or radiation exposure.


Subject(s)
Animal Experimentation , Germany , Glass
6.
Korean Journal of Medical Physics ; : 206-215, 2011.
Article in Korean | WPRIM | ID: wpr-153492

ABSTRACT

The purpose of this was to investigate the measurement of fluence dose map for the specific patient quality assurance. The measurement of fluence map was performed using 2D matrixx detector. The absorbed dose was measured by a glass detector, Gafchromic film and ion chamber in Hybrid Optimized VMAT Phantom (HOVP). For 2D Matrixx, the results of comparison were average passing rate 85.22%+/-1.7 (RT_Target), 89.96%+/-2.15 (LT_Target) and 95.14%+/-1.18 (G4). The dose difference was 11.72%+/-0.531, -11.47%+/-0.991, 7.81%+/-0.857, -4.14%+/-0.761 at the G1, G2, G3, G4. In HOVP, the results of comparison for film were average passing rate (3%, 3 mm) 93.64%+/-3.87, 90.82%+/-0.99. We were measured an absolute dose in steep gradient area G1, G2, G3, G4 using the glass detector. The difference between the measurement and calculation are 8.3% (G1), -5.4% (G2), 6.1% (G3), 7.2% (G4). The using an Ion-chamber were an average relative dose error -1.02%+/-0.222 (Rt_target), 0.96%+/-0.294 (Lt_target). Though we need a more study using a transmission detector. However, a measurement of real-time fluence map will be predicting a dose for real-time specific patient quality assurance in volume modulated arc therapy.


Subject(s)
Humans , Chimera , Glass
7.
Korean Journal of Medical Physics ; : 216-223, 2011.
Article in Korean | WPRIM | ID: wpr-153491

ABSTRACT

Recently PTW developed a MicroLion liquid ionization chamber which is water_equivalent and has a small sensitive volume of 0.002 cm3. The aim of this work is to investigate such dosimetric characteristics as dose linearity, dose rate dependency, spatial resolution, and output factors of the chamber for the external radiotherapy photon beam. The results were compared to those of Semiflex chamber, Pinpoint chamber and Diode chamber with the sensitive volumes of 0.125 cm3, 0.03 cm3 and 0.0025 cm3, respectively and evaluated to be suitable for small fields. This study was performed in the 6MV photon energy from a Varian 2300 C/D linac accelerator and the MP3 water phantom (PTW, Freiburg) was used. Penumbras in the varios field sizes ranged from 0.5x0.5 cm2 to 10x10 cm2 were used to evaluate the spatial resolution. Output factors were measured in the field sizes of 0.5x0.5 to 40x40 cm2. Readings of the chamber was linearly proportional to dose. Dose rate dependency was measured from 100 MU/min to 600 MU/min, showed a maximum difference of 5.0%, and outputs decreased with dose rates. The spatial resolutions determined with comparing profiles for the field sizes of 0.5x0.5 cm2 to 10x10 cm2 agreed between every detector except the Semiflex chamber to within 2%. Outputs of detectors were compared to that of Semiflex chamber and showed good agreements within 2% for every chamber. This study shows that MicroLion chamber characterized by a high signal-to-noise ratio and water equivalence could be suitable for the small field dosimetry.


Subject(s)
Dependency, Psychological , Reading , Signal-To-Noise Ratio , Spatial Analysis , Water
8.
Korean Journal of Medical Physics ; : 3-11, 2011.
Article in Korean | WPRIM | ID: wpr-124378

ABSTRACT

The purpose of this study was to evaluate feasibility of Vertical Multileaf Collimator for determination of irradiation size using Vertical Multileaf Collimator and lead block to determine 4 different irradiation shape in case of Co-60 gamma-ray and 6 MV X-ray. We chose ion chamber, glass dosimeter and EBT chromic film to compare with Vertical Multileaf Collimator results and lead block results. In case of Co-60 gamma-ray and 6 MV X-ray, the central axis point dose normalized at reference field of lead block with ion chamber results for Vertical Multileaf Collimator were estimated higher than lead block about 5.1%, 4.2%. In case of Co-60 gamma-ray, the central axis point dose normalized at reference field of lead block with glass dosimeter results for Vertical Multileaf Collimator were estimated higher than lead block about 2.2%, 7.8%, 7.2%, 4.0% for reference, circle, triangle, cross field, respectively. In case of 6 MV X-ray, the central axis point dose normalized at reference field of lead block with glass dosimeter results for Vertical Multileaf Collimator were estimated higher than lead block about 6.7%, 6.2%, 3.8%, 6.2% for reference, circle, triangle, cross field, respectively. The results of EBT chromic film, Vertical Multileaf Collimator of penumbra size for all irradiation shape was smaller than lead block of those size that 2.0~3.5 mm for Co-60 gamma-ray, 0.5~1.0 mm for 6 MV X-ray. The results from this study, radiation treatment volume that results in shielding block can be minimized. In addition, during radiation treatment for 2, 3-dimensional radiation therapy using a Vertical Multileaf Collimator of this survey can be used to determine variety of irradiation fields.


Subject(s)
Axis, Cervical Vertebra , Feasibility Studies , Glass
9.
Korean Journal of Medical Physics ; : 52-58, 2011.
Article in English | WPRIM | ID: wpr-124372

ABSTRACT

Our goal is to assess the suitability of a glass dosimeter on detection of high-energy electron beams for clinical use, especially for radiation therapy. We examined the dosimetric characteristics of glass dosimeters including dose linearity, reproducibility, angular dependence, dose rate dependence, and energy dependence of 5 different electron energy qualities. The GD was irradiated with high-energy electron beams from the medical linear accelerator andgamma rays from a cobalt-60 teletherapy unit. All irradiations were performed in a water phantom. The result of the dose linearity for high-energy electron beams showed well fitted regression line with the coefficient of determination; R2 of 0.999 between 6 and 20 MeV. The reproducibility of GDs exposed to the nominal electron energies 6, 9, 12, 16, and 20 MeV was +/-1.2%. In terms of the angular dependence to electron beams,GD response differences to the electron beam were within 1.5% for angles ranging from 0degrees to 90degrees and GD's maximum response differencewas 14% lower at 180degrees. In the dose rate dependence, measured dose values were normalized to the value obtained from 500 MU/min. The uncertainties of dose rate were measured within +/-1.5% except for the value from 100 MU/min. In the evaluation of the energy dependence of the GD at nominal electron energies between 6 and 20 MeV, we obtained lower responses between 1.1% and 4.5% based on cobalt-60 beam. Our results show that GDs have a considerable potentiality for measuring doses delivered by high-energy electron beams.


Subject(s)
Electrons , Feasibility Studies , Glass , Particle Accelerators , Water
10.
Korean Journal of Medical Physics ; : 14-20, 2009.
Article in English | WPRIM | ID: wpr-88372

ABSTRACT

We measured the dose distribution for spinal cord and tumor using Gafchromic film, applying 3D and 4D-Treatment Planning for lung tumor within the phantom. A measured dose distribution was compared with a calculated dose distribution generated from 3D radiation treatment planning and 4D radiation treatment planning system. The agreement of the dose distribution in tumor for 3D and 4D treatment planning was 90.6%, 97.64% using gamma index computed for a distance to agreement of 1 mm and a dose difference of 3%. However, a gamma agreement index of 3% dose difference tolerence of and 2 mm distance to agreement, the accordance of the dose distribution around cord for 3D and 4D radiation treatment planning was 57.13%, 90.4%. There are significant differences between a calculated dose and a measured dose for 3D radiation treatment planning, no significant differences for 4D treatment planning. The results provide the effectiveness of the 4D treatment planning as compared to 3D. We suggest that the 4-dimensional treatment planning should be considered in the case where such equipments as Cyberknife with the real time tracking system are used to treat the tumors in the moving organ.


Subject(s)
Lung , Radiosurgery , Spinal Cord , Track and Field
11.
Korean Journal of Medical Physics ; : 305-312, 2008.
Article in Korean | WPRIM | ID: wpr-93126

ABSTRACT

The aim of this study is to introduce the accuracy of Ir-192 source's apparent activity using the well-type chamber and the Farmer-type ionization chamber in the high dose rate brachytherapy. We measured the apparent activity of Ir-192 that each medical center in the country has and the apparent activity of calibration certificate provided by manufacturer is compared with that by our experimental measurement. The number of sources used for the activity comparison was 5. The accuracy of the measured activity was in the range of -2.8% to -1.0% and -2.1% to 0.2% for the Farmer-type chamber system (Jig) and for the well-type, respectively. The maximum difference was within 1.0% for comparison with two calibration's tool. Our results demonstrate that well-type chamber as wall as Farmer-type chamber is a appropriate system as the routine source calibration procedures in HDR brachytherapy. Whenever a new source is installed to use in clinics, by periods, a source calibration should be carried out.


Subject(s)
Brachytherapy , Calibration
12.
Korean Journal of Medical Physics ; : 87-92, 2007.
Article in Korean | WPRIM | ID: wpr-107965

ABSTRACT

A thermal neutron beam facility utilizing a typical tangential beam port for Neutron Capture Therapy was installed at the HANARO, 30 MW multi-purpose research reactor. Mixed beams with different physical characteristics and relative biological effectiveness would be emitted from the BNCT irradiation facility, so a quantitative analysis of each component of the mixed beams should be performed to determine the accurate delivered dose. Thus, various techniques were applied including the use of activation foils, TLDs and ionization chambers. All the dose measurements were performed with the water phantom filled with distilled water. The results of the measurement were compared with MCNP4B calculation. The thermal neutron fluxes were 1.02E9 n/cm2 s and 6.07E8 n/cm2 s at 10 and 20 mm depth respectively, and the fast neutron dose rate was insignificant as 0.11 Gy/hr at 10 mm depth in water. The gamma-ray dose rate was 5.10 Gy/hr at 20 mm depth in water. Good agreement within 5%, has been obtained between the measured dose and the calculated dose using MCNP for neutron and gamma component and discrepancy with 14% for fast neutron flux. Considering the difficulty of neutron detection, the current study support the reliability of these results and confirmed the suitability of the thermal neutron beam as a dosimetric data for BNCT clinical trials.


Subject(s)
Fast Neutrons , Neutron Capture Therapy , Neutrons , Relative Biological Effectiveness , Water
13.
The Journal of the Korean Society for Therapeutic Radiology and Oncology ; : 268-277, 2007.
Article in English | WPRIM | ID: wpr-159789

ABSTRACT

PURPOSE: Respiratory motion is a considerable inhibiting factor for precise treatment with stereotactic radiosurgery using the CyberKnife (CK). In this study, we developed a moving phantom to simulate three-dimensional breathing movement and investigated the distortion of dose profiles between the use of a moving phantom and a static phantom. MATERIALS AND METHODS: The phantom consisted of four pieces of polyethylene; two sheets of Gafchromic film were inserted for dosimetry. Treatment was planned to deliver 30 Gy to virtual tumors of 20, 30, 40, and 50 mm diameters using 104 beams and a single center mode. A specially designed robot produced three-dimensional motion in the right-left, anterior-posterior, and craniocaudal directions of 5, 10 and 20 mm, respectively. Using the optical density of the films as a function of dose, the dose profiles of both static and moving phantoms were measured. RESULTS: The prescribed isodose to cover the virtual tumors on the static phantom were 80% for 20 mm, 84% for 30 mm, 83% for 40 mm and 80% for 50 mm tumors. However, to compensate for the respiratory motion, the minimum isodose levels to cover the moving target were 70% for the 30~50 mm diameter tumors and 60% for a 20 mm tumor. For the 20 mm tumor, the gaps between the isodose curves for the static and moving phantoms were 3.2, 3.3, 3.5 and 1.1 mm for the cranial, caudal, right, and left direction, respectively. In the case of the 30 mm tumor, the gaps were 3.9, 4.2, 2.8, 0 mm, respectively. In the case of the 40 mm tumor, the gaps were 4.0, 4.8, 1.1, and 0 mm, respectively. In the case of the 50 mm diameter tumor, the gaps were 3.9, 3.9, 0 and 0 mm, respectively. CONCLUSION: For a tumor of a 20 mm diameter, the 80% isodose curve can be planned to cover the tumor; a 60% isodose curve will have to be chosen due to the tumor motion. The gap between these 80% and 60% curves is 5 mm. In tumors with diameters of 30, 40 and 50 mm, the whole tumor will be covered if an isodose curve of about 70% is selected, equivalent of placing a respiratory margin of below 5 mm. It was confirmed that during CK treatment for a moving tumor, the range of distortion produced by motion was less than the range of motion itself.


Subject(s)
Polyethylene , Radiosurgery , Range of Motion, Articular , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL