Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Safety and Health at Work ; : 210-217, 2011.
Article in English | WPRIM | ID: wpr-220908

ABSTRACT

OBJECTIVES: The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. METHODS: A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. RESULTS: A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. CONCLUSION: Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.


Subject(s)
Humans , Korea , Light , Parents , Phenol , Semiconductors , Solvents , Toluene , Transcutaneous Electric Nerve Stimulation , Ventilation , Volatile Organic Compounds
2.
Safety and Health at Work ; : 98-101, 2010.
Article in English | WPRIM | ID: wpr-33914

ABSTRACT

This study explored the health hazard of those exposed to methylene chloride by assessing its atmospheric concentration when a tear gas mixture was aerially dispersed. The concentration of methylene chloride ranged from 311.1-980.3 ppm (geometric mean, 555.8 ppm), 30 seconds after the dispersion started. However, the concentration fell rapidly to below 10 ppm after dispersion was completed. The concentration during the dispersion did not surpass the National Institute for Occupational Safety and Health 'immediately dangerous to life or health' value of 2,300 ppm, but did exceed the American Conference of Governmental Industrial Hygienists excursion limit of 250 ppm. Since methylene chloride is highly volatile (vapor pressure, 349 mmHg at 20degrees C), the postdispersion atmospheric concentration can rise instantaneously. Moreover, the o-chlorobenzylidenemalononitrile formulation of tear gas (CS gas) is an acute upper respiratory tract irritant. Therefore, tear gas mixtures should be handled with delicate care.


Subject(s)
Methylene Chloride , o-Chlorobenzylidenemalonitrile , Respiratory System , Tear Gases
3.
Safety and Health at Work ; : 51-60, 2010.
Article in English | WPRIM | ID: wpr-132158

ABSTRACT

OBJECTIVES: The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. METHODS: From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. RESULTS: The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). CONCLUSION: These findings suggest that the periodic work environment must be assessed during non-routine works such as TA.


Subject(s)
Benzene , Korea , Occupational Exposure , Occupations , Threshold Limit Values
4.
Safety and Health at Work ; : 51-60, 2010.
Article in English | WPRIM | ID: wpr-132155

ABSTRACT

OBJECTIVES: The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. METHODS: From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. RESULTS: The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). CONCLUSION: These findings suggest that the periodic work environment must be assessed during non-routine works such as TA.


Subject(s)
Benzene , Korea , Occupational Exposure , Occupations , Threshold Limit Values
SELECTION OF CITATIONS
SEARCH DETAIL