Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Korean Neurosurgical Society ; : 261-270, 2021.
Article in English | WPRIM | ID: wpr-874817

ABSTRACT

Objective@#: Decompressive craniectomy (DC) can partially remove the unyielding skull vault and make affordable space for the expansion of swelling brain contents. The objective of this study was to compare clinical outcome according to DC surface area (DC area) and side. @*Methods@#: A total of 324 patients underwent different surgical methods (unilateral DC, 212 cases and bilateral DC, 112 cases) were included in this retrospective analysis. Their mean age was 53.4±16.6 years (median, 54 years). Neurological outcome (Glasgow outcome scale), ventricular intracranial pressure (ICP), and midline shift change (preoperative minus postoperative) were compared according to surgical methods and total DC area, DC surface removal rate (DC%) and side. @*Results@#: DC surgery was effective for ICP decrease (32.3±16.7 mmHg vs. 19.2±13.4 mmHg, p<0.001) and midline shift change (12.5±7.6 mm vs. 7.8±6.9 mm, p<0.001). The bilateral DC group showed larger total DC area (125.1±27.8 cm2 for unilateral vs. 198.2±43.0 cm2 for bilateral, p<0.001). Clinical outcomes were nonsignificant according to surgical side (favorable outcome, p=0.173 and mortality, p=0.470), significantly better when total DC area was over 160 cm2 and DC% was 46% (p=0.020 and p=0.037, respectively). @*Conclusion@#: DC surgery is effective in decrease the elevated ICP, decrease the midline shift and improve the clinical outcome in massive brain swelling patient. Total DC area and removal rate was larger in bilateral DC than unilateral DC but clinical outcome was not influenced by DC side. DC area more than 160 cm2 and DC surface removal rate more than 46% were more important than DC side.

2.
Korean Journal of Neurotrauma ; : 147-156, 2020.
Article in English | WPRIM | ID: wpr-917983

ABSTRACT

Objective@#Commonly, brain temperature is estimated from measurements of body temperature. However, temperature difference between brain and body is still controversy.The objective of this study is to know temperature gradient between the brain and axilla according to body temperature in the patient with brain injury. @*Methods@#A total of 135 patients who had undergone cranial operation and had the thermal diffusion flow meter (TDF) insert were included in this analysis. The brain and axilla temperatures were measured simultaneously every 2 hours with TDF (2 kinds of devices:SABER 2000 and Hemedex) and a mercury thermometer. Saved data were divided into 3 groups according to axillary temperature. Three groups are hypothermia group (less than 36.4°C), normothermia group (between 36.5°C and 37.5°C), and hyperthermia group (more than 37.6°C). @*Results@#The temperature difference between brain temperature and axillary temperature was 0.93±0.50°C in all data pairs, whereas it was 1.28±0.56°C in hypothermia, 0.87±0.43°C in normothermia, and 0.71±0.41°C in hyperthermia. The temperature difference was statistically significant between the hypothermia and normothermia groups (p=0.000), but not between the normothermia and hyperthermia group (p=0.201). @*Conclusion@#This study show that brain temperature is significantly higher than the axillary temperature and hypothermia therapy is associated with large brain-axilla temperature gradients. If you do not have a special brain temperature measuring device, the results of this study will help predict brain temperature by measuring axillary temperature.

SELECTION OF CITATIONS
SEARCH DETAIL