Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 618-624, 2023.
Article in Chinese | WPRIM | ID: wpr-974696

ABSTRACT

Objective @# To investigate the effect of erythropoietin producing hepatocyte kinase receptor ligand B2-erythropoietin producing hepatocyte kinase receptor B4 (EphrinB2/EphB4) on the osteogenic differentiation of MC3T3-E1 cells in a hypoxic environment to provide experimental evidence for hypoxia regulation of osteoblast differentiation.@*Methods @# Control groups and cobalt chloride (CoCl2)-induced hypoxia groups were set up first. qRT-PCR was used to detect the mRNA expression of the osteogenic markers alkaline phosphatase (ALP), collogen1 (COL I), runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN). ALP staining was used to detect the activity of cell alkaline phosphatase after osteogenic induction. The mRNA and protein expression levels of hypoxia inducible factor-1α (HIF-1α), EphrinB2 and EphB4 in the two groups were detected via qRT-PCR and Western blot. Then, the CoCl2 + inhibitor group was established. NVP-BHG712, an EphB4 phosphorylation inhibitor, was added to this group to prevent EphrinB2 from binding to EphB4 and producing signals. qRT-PCR and Western blot were used to detect the mRNA and protein expression of osteogenic markers, including ALP, RUNX2, COL I, and OCN. ALP staining and Alizarin red S staining were used to measure osteoblast differentiation and mineralization. @*Results @# Compared with the control group, the mRNA expression of the osteogenic differentiation markers ALP, RUNX2, COL-1, and OCN in MC3T3-E1 cells increased, and ALP activity and mineralization were enhanced under CoCl2-induced hypoxia in vitro (P<0.05). Additionally, the expression of HIF-1α, EphrinB2 and EphB4 was upregulated at the mRNA and protein levels under hypoxia (P<0.05). When NVP-BHG712 was used to block the connection between EphrinB2 and EphB4, the expression of osteogenic markers and ALP activity and mineralization were decreased (P<0.05).@*Conclusion@#EphrinB2/EphB4 can promote osteogenic differentiation of MC3T3-E1 cells and increase the expression of osteogenic markers and tissue mineralization in a hypoxic environment.

SELECTION OF CITATIONS
SEARCH DETAIL