Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 116: e200552, 2021. graf
Article in English | LILACS | ID: biblio-1250362

ABSTRACT

Coronaviruses can cause a diverse array of clinical manifestations, from fever with symptoms of the common cold to highly lethal severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). SARS-CoV-2, the coronavirus discovered in Hubei province, China, at the end of 2019, became known worldwide for causing coronavirus disease 2019 (COVID-19). Over one year's time period, the scientific community has produced a large bulk of knowledge about this disease and countless reports about its immune-pathological aspects. This knowledge, including data obtained in postmortem studies, points unequivocally to a hypercoagulability state. However, the name COVID-19 tells us very little about the true meaning of the disease. Our proposal is more comprehensive; it intends to frame COVID-19 in more clinical terminology, making an analogy to viral haemorrhagic fever (VHF). Thus, we found irrefutable evidence in the current literature that COVID-19 is the first viral disease that can be branded as a viral thrombotic fever. This manuscript points out that SARS-CoV-2 goes far beyond pneumonia or SARS. COVID-19 infections promote remarkable interactions among the endothelium, coagulation, and immune response, building up a background capable of promoting a "thrombotic storm," much more than a "cytokine storm." The importance of a viral protease called main protease (Mpro) is highlighted as a critical component for its replication in the host cell. A deeper analysis of this protease and its importance on the coagulation system is also discussed for the first time, mainly because of its similarity with the thrombin and factor Xa molecules, as recently pointed out by structural comparison crystallographic structures.


Subject(s)
Humans , COVID-19 , China , Fever , SARS-CoV-2
2.
Mem. Inst. Oswaldo Cruz ; 115: e190389, 2020. tab, graf
Article in English | LILACS | ID: biblio-1091236

ABSTRACT

BACKGROUND Chagas disease, which is caused by the protozoan Trypanosoma cruzi, is endemic to Latin America and mainly affects low-income populations. Chemotherapy is based on two nitrocompounds, but their reduced efficacy encourages the continuous search for alternative drugs. Our group has characterised the trypanocidal effect of naphthoquinones and their derivatives, with naphthoimidazoles derived from β-lapachone (N1, N2 and N3) being the most active in vitro. OBJECTIVES In the present work, the effects of N1, N2 and N3 on acutely infected mice were investigated. METHODS in vivo activity of the compounds was assessed by parasitological, biochemical, histopathological, immunophenotypical, electrocardiographic (ECG) and behavioral analyses. FINDINGS Naphthoimidazoles led to a decrease in parasitaemia (8 dpi) by reducing the number of bloodstream trypomastigotes by 25-50% but not by reducing mortality. N1 protected mice from heart injury (15 dpi) by decreasing inflammation. Bradycardia was also partially reversed after treatment with N1 and N2. Furthermore, the three compounds did not reverse hepatic and renal lesions or promote the improvement of other evaluated parameters. MAIN CONCLUSION N1 showed moderate trypanocidal and promising immunomodulatory activities, and its use in combination with benznidazole and/or anti-arrhythmic drugs as well as the efficacy of its alternative formulations must be investigated in the near future.


Subject(s)
Animals , Male , Mice , Trypanocidal Agents/therapeutic use , Naphthoquinones/therapeutic use , Chagas Disease/drug therapy , Nitroimidazoles/therapeutic use , Time Factors , Trypanocidal Agents/chemistry , Acute Disease , Naphthoquinones/chemistry , Parasitemia/drug therapy , Disease Models, Animal , Electrocardiography , Anti-Inflammatory Agents , Nitroimidazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL