Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mem. Inst. Oswaldo Cruz ; 115: e190342, 2020. graf
Article in English | LILACS | ID: biblio-1091239

ABSTRACT

BACKGROUND The five BRICS (Brazil, Russian, Indian, China, and South Africa) countries bear 49% of the world's tuberculosis (TB) burden and they are committed to ending tuberculosis. OBJECTIVES The aim of this paper is to map the scientific landscape related to TB research in BRICS countries. METHODS Were combined bibliometrics and social network analysis techniques to map the scientific publications related to TB produced by the BRICS. Was made a descriptive statistical data covering the full period of analysis (1993-2016) and the research networks were made for 2007-2016 (8,366 records). The bubble charts were generated by VantagePoint and the networks by the Gephi 0.9.1 software (Gephi Consortium 2010) from co-occurrence matrices produced in VantagePoint. The Fruchterman-Reingold algorithm provided the networks' layout. FINDINGS During the period 1993-2016, there were 38,315 peer-reviewed, among them, there were 11,018 (28.7%) articles related by one or more authors in a BRICS: India 38.7%; China 23.8%; South Africa 21.1%; Brazil 13.0%; and Russia 4.5% (The total was greater than 100% because our criterion was all papers with at least one author in a BRICS). Among the BRICS, there was greater interaction between India and South Africa and organisations in India and China had the highest productivity; however, South African organisations had more interaction with countries outside the BRICS. Publications by and about BRICS generally covered all research areas, especially those in India and China covered all research areas, although Brazil and South Africa prioritised infectious diseases, microbiology, and the respiratory system. MAIN CONCLUSIONS An overview of BRICS scientific publications and interactions highlighted the necessity to develop a BRICS TB research plan to increase efforts and funding to ensure that basic science research successfully translates into products and policies to help end the TB epidemic.


Subject(s)
Humans , Periodicals as Topic/statistics & numerical data , Tuberculosis , Bibliometrics , Publication Bias , Biomedical Research/statistics & numerical data , South Africa , Brazil , China , Russia , India
2.
Mem. Inst. Oswaldo Cruz ; 115: e190407, 2020. tab
Article in English | LILACS | ID: biblio-1101275

ABSTRACT

BACKGROUND Early diagnosis of tuberculosis (TB) and identification of strains of Mycobacterium tuberculosis resistant to anti-TB drugs are considered the main factors for disease control. OBJECTIVES To standardise a real-time polymerase chain reaction (qPCR) assay technique and apply it to identify mutations involved in M. tuberculosis resistance to Isoniazid (INH) directly in Ziehl-Neelsen (ZN) stained slides. METHODS Were analysed 55 independent DNA samples extracted from clinical isolates of M. tuberculosis by sequencing. For application in TB diagnosis resistance, 59 ZN-stained slides were used. The sensitivity, specificity and Kappa index, with a 95% confidence interval (CI95%), were determined. FINDINGS The agreement between the tests was, for the katG target, the Kappa index of 0.89 (CI95%: 0.7-1.0). The sensitivity and specificity were 97.6% (CI95%: 87.7-99.9) and 91.7% (CI95%: 61.5-99.5), respectively. For inhA, the Kappa index was 0.92 (CI95%: 0.8-1.0), the sensitivity and specificity were 94.4% (CI95%: 72.7-99.8) and 97.3% (CI95%: 85.8-99.9), respectively. The use of ZN-stained slides for drug-resistant TB detection showed significant results when compared to other standard tests for drug resistance. MAIN CONCLUSIONS qPCR genotyping proved to be an efficient method to detect genes that confer M. tuberculosis resistance to INH. Thus, qPCR genotyping may be an alternative instead of sequencing.


Subject(s)
Humans , Genetic Markers/genetics , Drug Resistance, Bacterial/genetics , Isoniazid/pharmacology , Mutation/genetics , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , DNA, Bacterial/genetics , Microbial Sensitivity Tests , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction , Genotype , Mycobacterium tuberculosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL