ABSTRACT
The acidic Seminal Fluid Protein (aSFP), a 12.9 kDa protein is a maker for bovine semen freezability possibly due to its antioxidant activity and effect on sperm mitochondrial function. However, its precise function on sperm preservation during freezing thaw is poorly understood. The use of recombinant DNA technology allows new approaches on the study of function and structure of proteins, and its production in procaryote systems offers several advantages. The present work describes the recombinant expression of the bovine aSFP and its binding properties. A cDNA library from the bovine seminal vesicle was used as template for amplification of the aSFP coding region. The amplicon was cloned into a pET23a (+) vector and transformed into E.coli BL21 pLysS strain. The recombinant expression was obtained in E coli. One step ion immobilized affinity chromatography was performed, resulting in high yield of purified protein. To determine the bioactivity of the r aSFP, the protein was incubated in different concentrations with 10 7 spermtozoa at 37°C for 5 h. Western blotting and fluorescence microscopy analyses showed the ability of the recombinant aSFP to attach to the spermatozoa. Based on our results, the described method can be used to obtain mg levels of recombinant aSFP.
Subject(s)
Male , Animals , Cattle , Recombinant Proteins/isolation & purification , Seminal Plasma Proteins/chemical synthesis , Antioxidants , Semen Preservation/veterinaryABSTRACT
Group B Streptococcus (GBS) is the most common cause of life-threatening infection in neonates. Guidelines from CDC recommend universal screening of pregnant women for rectovaginal GBS colonization. The objective of this study was to compare the performance of a combined enrichment/PCR based method targeting the atr gene in relation to culture using enrichment with selective broth medium (standard method) to identify the presence of GBS in pregnant women. Rectovaginal GBS samples from women at ¡Ý36 weeks of pregnancy were obtained with a swab and analyzed by the two methods. A total of 89 samples were evaluated. The prevalence of positive results for GBS detection was considerable higher when assessed by the combined enrichment/PCR method than with the standard method (35.9% versus 22.5%, respectively). The results demonstrated that the use of selective enrichment broth followed by PCR targeting the atr gene is a highly sensitive, specific and accurate test for GBS screening in pregnant women, allowing the detection of the bacteria even in lightly colonized patients. This PCR methodology may provide a useful diagnostic tool for GBS detection and contributes for a more accurate and effective intrapartum antibiotic and lower newborn mortality and morbidity.