Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 114: e180350, 2019. tab, graf
Article in English | LILACS | ID: biblio-984756

ABSTRACT

BACKGROUND The prompt diagnosis of plasmodial species for effective treatment prevents worsening of individual health and avoids transmission maintenance or even malaria reintroduction in areas where Plasmodium does not exist. Polymerase chain reaction (PCR) allows for the detection of parasites below the threshold of microscopic examination. OBJECTIVE Our aim was to develop a real-time PCR test to reduce diagnostic errors and increase efficacy. METHODS The lower limit of quantification and the linearity/analytical sensitivity to measure sensitivity or limit of detection (LoD) were determined. Intra-assay variations (repeatability) and alterations between assays, operators, and instruments (reproducibility) were also assessed to set precision. FINDINGS The linearity in SYBR™ Green and TaqMan™ systems was 106 and 102 copies and analytical sensitivity 1.13 and 1.17 copies/μL, respectively. Real-time PCR was more sensitive than conventional PCR, showing a LoD of 0.01 parasite (p)/μL. Reproducibility and repeatability (precision) were 100% for up to 0.1 p/μL in SYBR™ Green and 1 p/μL in TaqMan™ and conventional PCR. CONCLUSION Real-time PCR may replace conventional PCR in reference laboratories for P. vivax detection due to its rapidity. The TaqMan™ system is the most indicated when quantification assays are required. Performing tests in triplicate when diagnosing Plasmodium-infected-asymptomatic individuals is recommended to minimise diagnostic errors.


Subject(s)
Humans , Plasmodium vivax , Malaria/diagnosis , Malaria/prevention & control , Malaria/transmission
2.
Mem. Inst. Oswaldo Cruz ; 114: e180425, 2019. tab
Article in English | LILACS | ID: biblio-984759

ABSTRACT

BACKGROUND AND OBJECTIVE Brazil is responsible for a large number of Plasmodium vivax cases in America. Given the emergence of P. vivax parasites resistant to chloroquine and the effectiveness of antifolates in vivax malaria treatment together with a correlation between mutations in P. vivax dhfr and dhps genes and SP treatment failure, the point mutations in these genes were investigated. METHODS Blood samples from 54 patients experiencing vivax malaria symptomatic episodes in the Amazonian Region were investigated. Genomic DNA was extracted using a DNA extraction kit (QIAGENTM). Nested polymerase chain reaction (PCR) amplification was carried out followed by Sanger sequencing to detect single nucleotide polymorphisms (SNPs). FINDINGS All tested isolates showed non-synonymous mutations in pvdhfr gene: 117N (54/54, 100%) and 58R (25/54, 46%). Double mutant allele 58R/117N (FRTNI, 28%) was the most frequent followed by triple mutant alleles (58R/117N/173L, FRTNL, 11%; 58R/61M/117N, FRMNI, 5% 117N/173L, FSTNL, 4%) and quadruple mutant allele (58R/61M/117N/173L, FRMNL, 2%). A single mutation was observed at codon C383G in pvdhps gene (SGKAV, 48%). CONCLUSION No evidence of molecular signatures associated with P. vivax resistance to SP was observed in the Brazilian samples.


Subject(s)
Humans , Drug Resistance/drug effects , Merozoite Surface Protein 1 , Malaria/blood
SELECTION OF CITATIONS
SEARCH DETAIL