Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Applied Physiology ; (6): 122-125, 2018.
Article in Chinese | WPRIM | ID: wpr-773790

ABSTRACT

OBJECTIVES@#Stably expressed transforming growth factor -beta 1(TGF-β1)MCs were obtained and the effects of centellaasiatica (CA) granule on the expressions of Smad 2/3, Smad 7 and collagen Ⅳ and the level of Smad 2/3 phosphorylation were observed.@*METHODS@#Lipofectin method was used to transfect TGF-β1 vector into MC, and the stably expressed TGF-β1 cell lines were selected by G418. The cells were divided into three groups. Control group:normal MC + RPMI 1640 + 10% normal rat serum; TGF-β1 group:stably expressed TGF-β1 MC + RPMI 1640 + 10% normal rat serum; CA group:stably expressed TGF-β1 MC + RPMI 1640 + 10% rat serum containing high CA. The experiments were repeated for five times. The contents of TGF-β1 and collagen Ⅳ in the culture medium were detected with ELISA, the expressions of mRNA and protein of TGF-β1, Smad 2/3, Smad 7 and the level of Smad 2/3 phosphorylation were detected by using real time quantitative polymerase chain reaction and Western blot.@*RESULTS@#The contents of TGF-β1 and collagen Ⅳ in the culture medium of stably-expressed TGF-β1 MC were increased significantly, and the CA could reverse the effects of TGF-β1. The expressions of mRNA and protein of TGF-β1, Smad 2/3 and the level of Smad 2/3 phosphorylation were increased significantly in TGF-β1 transfected MC, and CA could dramatically reduce the expressions of mRNA and protein of TGF-β1, Smad 2/3 and the level of Smad 2/3 phosphorylation. The high expression of TGF-β1 decreased the expression of Smad 7 mRNA and protein, and the CA could antagonize the effect of mRNA expression.@*CONCLUSIONS@#The MCs stably-expressed TGF-β1 can activate the TGF-β1/Smad signal pathway and increase the expression of collagen Ⅳ. CA can decrease the occurrence of diabetic nephropathy(DN) by reducing the production of collagen Ⅳ through inhibiting the TGF-β1/Smad signal pathway.


Subject(s)
Animals , Rats , Cells, Cultured , Centella , Chemistry , Collagen Type IV , Metabolism , Drugs, Chinese Herbal , Pharmacology , Mesangial Cells , Metabolism , Signal Transduction , Smad Proteins , Metabolism , Smad2 Protein , Metabolism , Smad3 Protein , Metabolism , Smad7 Protein , Metabolism , Transforming Growth Factor beta1 , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL