Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 35: 25-32, sept. 2018. graf, ilus
Article in English | LILACS | ID: biblio-1047765

ABSTRACT

Background: Pollen development is an important reproductive process that directly affects pollen fertility and grain yield in rice. Argonaute (AGO) proteins, the core effectors of RNA-mediated silencing, play important roles in regulating plant growth and development. However, few AGO proteins in rice were reported to be involved in pollen development. In this study, artificial microRNA technology was used to assess the function of OsAGO17 in pollen development. Results: In this study, OsAGO17, a rice-specific gene, was specifically expressed in rice pollen grains, with the highest expression in uninucleate microspores. Downregulation of OsAGO17 by artificial microRNA technology based on the endogenous osa-miRNA319a precursor was successfully achieved. It is found that downregulation of OsAGO17 could significantly affect pollen fertility and cause pollen abortion, thus suggesting that OsAGO17 functions in rice pollen development. In addition, the downregulation of OsAGO17 mainly caused a low seed-setting rate, thereby resulting in the reduction of grain yield, whereas the downregulation of OsAGO17 did not significantly affect rice vegetative growth and other agricultural traits including number of florets per panicle, number of primary branch per panicle, and 100-grain weight. Furthermore, the result of subcellular localization analysis indicated that the OsAGO17 protein was localized to both the nucleus and the cytoplasm. Conclusion: These results represent the first report of the biological function for OsAGO17 in rice and indicate that OsAGO17 may possibly play crucial regulatory roles in rice pollen development. It helps us to better understand the mechanism of pollen development in rice.


Subject(s)
Pollen/growth & development , Oryza/growth & development , Down-Regulation , Argonaute Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , MicroRNAs , RNA Interference , Fertility , Argonaute Proteins/genetics
2.
Electron. j. biotechnol ; 29: 39-46, sept. 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-1017082

ABSTRACT

Background: Idesia polycarpa Maxim. var. vestita Diels, a dioecious plant, is widely used for biodiesel due to the high oil content of its fruits. However, it is hard to distinguish its sex in the seedling stage, which makes breeding and production problematic as only the female tree can produce fruits, and the mechanisms underlying sex determination and differentiation remain unknown due to the lack of available genomic and transcriptomic information. To begin addressing this issue, we performed the transcriptome analysis of its female and male flower. Results: 28,668,977 and 22,227,992 clean reads were obtained from the female and male cDNA libraries, respectively. After quality checks and de novo assembly, a total of 84,213 unigenes with an average length of 1179 bp were generated and 65,972 unigenes (78.34%) could be matched in at least one of the NR, NT, Swiss-Prot, COG, KEGG and GO databases. Functional annotation of the unigenes uncovered diverse biological functions and processes, including reproduction and developmental process, which may play roles in sex determination and differentiation. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed many unigenes annotated as metabolic pathways, biosynthesis of secondary metabolites pathways, plant­ pathogen interaction, and plant hormone signal transduction. Moreover, 29,953 simple sequence repeats were identified using the microsatellite software. Conclusion: This work provides the first detailed transcriptome analysis of female and male flower of I. polycarpa and lays foundations for future studies on the molecular mechanisms underlying flower bud development of I. polycarpa.


Subject(s)
Reproduction/genetics , Salicaceae/genetics , Transcriptome , Sequence Analysis, RNA , Genes, Plant , Microsatellite Repeats , Salicaceae/growth & development , Databases, Genetic , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation
3.
Electron. j. biotechnol ; 18(5): 368-375, Sept. 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-764024

ABSTRACT

Background Cysteine proteinase inhibitor (cystatin, CPI) is one of the most important molecules involved in plant development and defense, especially in the regulation of stress responses. However, it is still unclear whether the Jatropha curcas CPI (JcCPI) gene functions in salinity response and tolerance. In this study, the sequence of the JcCPI gene, its expression pattern, and the effects of overexpression in Escherichia coli and Nicotiana benthamiana were examined. The purpose of this study was to evaluate the regulatory role of JcCPI in salinity stress tolerance. Results The CPI gene, designated JcCPI, was cloned from J. curcas; its sequence shared conserved domains with other plant cystatins. Based on a transcription pattern analysis, JcCPI was expressed in all tissues examined, but its expression was highest in the petiole. Additionally, the expression of JcCPI was induced by salinity stress. A potential role of JcCPI was detected in transgenic E. coli, which exhibited strong CPI activity and high salinity tolerance. JcCPI was also transferred to tobacco plants. In comparison to wild-type plants, transgenic plants expressing JcCPI exhibited increased salinity resistance, better growth performance, lower malondialdehyde (MDA) contents, higher anti-oxidase activity, and higher cell viability under salinity stress. Conclusions Based on the results of this study, overexpression of JcCPI in E. coli and N. benthamiana conferred salinity stress tolerance by blocking cysteine proteinase activity. The JcCPI gene cloned in this study will be very useful for the development of stress-tolerant crops.


Subject(s)
Cysteine Proteinase Inhibitors/metabolism , Jatropha , Salt Tolerance , Sequence Analysis , Computational Biology , Cysteine Proteases , Real-Time Polymerase Chain Reaction , Salt Stress
SELECTION OF CITATIONS
SEARCH DETAIL