Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 43(4): 330-337, Apr. 2010. ilus, graf
Article in English | LILACS | ID: lil-543582

ABSTRACT

The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-á) on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-á (10 or 100 ng/mL) for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-á treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-á decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-á did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-á increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.


Subject(s)
Humans , Cell Membrane Permeability/drug effects , Epithelial Cells/drug effects , Intestinal Mucosa/cytology , Membrane Proteins/drug effects , Tight Junctions/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Blotting, Western , Epithelial Cells/metabolism , Membrane Proteins/metabolism , Polymerase Chain Reaction/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL