Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomedical and Environmental Sciences ; (12): 136-145, 2018.
Article in English | WPRIM | ID: wpr-776071

ABSTRACT

OBJECTIVE@#Newly identified human rhinovirus C (HRV-C) and human bocavirus (HBoV) cannot propagate in vitro in traditional cell culture models; thus obtaining knowledge about these viruses and developing related vaccines are difficult. Therefore, it is necessary to develop a novel platform for the propagation of these types of viruses.@*METHODS@#A platform for culturing human airway epithelia in a three-dimensional (3D) pattern using Matrigel as scaffold was developed. The features of 3D culture were identified by immunochemical staining and transmission electron microscopy. Nucleic acid levels of HRV-C and HBoV in 3D cells at designated time points were quantitated by real-time polymerase chain reaction (PCR). Levels of cytokines, whose secretion was induced by the viruses, were measured by ELISA.@*RESULTS@#Properties of bronchial-like tissues, such as the expression of biomarkers CK5, ZO-1, and PCK, and the development of cilium-like protuberances indicative of the human respiration tract, were observed in 3D-cultured human airway epithelial (HAE) cultures, but not in monolayer-cultured cells. Nucleic acid levels of HRV-C and HBoV and levels of virus-induced cytokines were also measured using the 3D culture system.@*CONCLUSION@#Our data provide a preliminary indication that the 3D culture model of primary epithelia using a Matrigel scaffold in vitro can be used to propagate HRV-C and HBoV.


Subject(s)
Humans , Collagen , Drug Combinations , Enterovirus , Enterovirus Infections , Virology , Enzyme-Linked Immunosorbent Assay , Epithelial Cells , Virology , Human bocavirus , Laminin , Parvoviridae Infections , Virology , Primary Cell Culture , Methods , Proteoglycans , Real-Time Polymerase Chain Reaction , Respiratory Mucosa , Virology , Virus Cultivation
2.
Biomedical and Environmental Sciences ; (12): 137-142, 2016.
Article in English | WPRIM | ID: wpr-258843

ABSTRACT

The aim of this study was to investigate the knockdown efficiency of 2'-O-methylated (2'-OMe)-modified small interfering RNAs (siRNAs) on human rhinovirus 1B (HRV1B) replication and the interferon response. Thus, 24 2'-OMe-modified siRNAs were designed to target HRV1B. The RNA levels of HRV1B, Toll-like receptor 3, melanoma differentiation-associated gene 5, retinoic acid inducible gene-I, and interferons were determined in HRV1B-infected HeLa and BEAS-2B epithelial cells transfected with 2'-OMe-modified siRNAs. The results revealed that all 2'-OMe-modified siRNAs interfered with the replication of HRV1B in a cell-specific and transfection efficiency-dependent manner. Viral activation of Toll-like receptor 3, melanoma differentiation-associated gene 5, retinoic acid inducible gene-I, and the interferon response was detected. In conclusion, the 2'-OMe-modified siRNAs used in this study could interfere with HRV1B replication, possibly leading to the reactivation of the interferon response.


Subject(s)
Humans , Gene Knockdown Techniques , HeLa Cells , Interferons , Physiology , RNA, Small Interfering , Rhinovirus , Virus Replication
3.
Biomedical and Environmental Sciences ; (12): 286-289, 2016.
Article in English | WPRIM | ID: wpr-258822

ABSTRACT

Norovirus (NoV) is a pathogen that commonly causes viral diarrhea in children. Studies indicate that NoV recognizes human histo-blood group antigens (HBGAs) as cell attachment factors. In order to explore the correlation between of NoV infection and HBGAs, a cross-sectional study was conducted in children less than five years old who were hospitalized with diarrhea in two areas of China between November 2014 and February 2015. Of the paired stool and saliva samples taken from 424 children, NoV was detected in 24 (6%) children, with viral genotypes GII.3 (n=5), GII.4 (n=14), GII.12 (n=1), and GII.17 (n=4). All of the individuals having NoV infection were either secretors (Lea-b+/Lex-y+) or partial secretors (Lea+b+/Lex+y+) except one GII.3 infection of a non-secretor (Lea+b-/Lex+y-). These results suggest that secretor positive is associated with NoV infection, although non-secretors are not absolutely protected from NoV infection.


Subject(s)
Child, Preschool , Humans , Infant , Blood Group Antigens , Genetics , Caliciviridae Infections , Blood , Virology , China , Cross-Sectional Studies , Diarrhea , Blood , Virology , Feces , Virology , Gastroenteritis , Blood , Virology , Genotype , Norovirus , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL