Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 965-973, 2023.
Article in Chinese | WPRIM | ID: wpr-998988

ABSTRACT

ObjectiveTo construct a human ovarian cancer cell line SKOV3 (SK-Luc-EGFP) stably co-expressing luciferase (Luc) and enhanced green fluorescent protein (EGFP) and to explore its application in ovarian cancer research both in vitro and in vivo. MethodsThe recombinant plasmid pCDH-Luc-T2A-EGFP-Puro was constructed by introducing a Luc-T2A-EGFP fusion gene fragment amplified by Overlap PCR into plasmid vector. The three-plasmid lentivirus packaging system was transfected into HEK 293T cells and the viral supernatant was harvested to infect SKOV3 cells. SK-Luc-EGFP cell line with the highest fluorescence intensity of EGFP was obtained by puromycin selection and flow cytometry assessment, and the Luc expression of the cell line was subsequently validated by in vitro bioluminescent assay. SK-Luc-EGFP cells were further explored for the following applications: distinguishing SK-Luc-EGFP cells from non-tumor cells in ascites by flow cytometry and confocal microscopy; visualizing adhesion of SK-Luc-EGFP cells to mesothelial cells or omentum by fluorescence microscopy; monitoring process of SK-Luc-EGFP tumorigenesis by in vivo bioluminescence imaging. ResultsA recombinant lentiviral expression plasmid pCDH-Luc-T2A-EGFP-Puro was constructed and packaged into lentiviral particles that were then transfected into SKOV3 cells to generate SK-Luc-EGFP cell line. The purity of SK-Luc-EGFP cells based on EGFP expression was 100% as validated by fluorescence microscopy and flow cytometry; SK-Luc-EGFP cells could be visually distinguished from non-tumor cells in ascitic fluid by flow cytometry and confocal imaging. Moreover, Luc expression in SK-Luc-EGFP cells was verified by in vitro bioluminescence assay, and a linear relationship with a correlation coefficient of 0.997 9 was found between cell number and the bioluminescent signal. Adhesion of SK-Luc-EGFP cells to mesothelial cells was directly observed by fluorescence imaging in in vitro adhesion assay; peritoneal adhesion of SK-Luc-EGFP cells to omentum was also observed after intraperitoneal (i.p.) injection of SK-Luc-EGFP cells in nude mice; in the peritoneal metastasis mouse model established by i.p. injection of SK-Luc-EGFP cells, monitoring of tumorigenesis process was achieved by in vivo bioluminescence imaging. ConclusionSK-Luc-EGFP cell line is a useful tool for investigating ovarian cancer in vitro and in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL