Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
4.
Braz. j. med. biol. res ; 43(9): 828-836, Sept. 2010. ilus
Article in English | LILACS | ID: lil-556864

ABSTRACT

Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.


Subject(s)
Animals , Mice , Cell Proliferation/drug effects , Endothelins/pharmacology , Rhodopsin/drug effects , Vasoconstrictor Agents/pharmacology , Viper Venoms/pharmacology , Cell Line , Gene Expression Regulation , Goldfish , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Polymerase Chain Reaction , Protein Kinase C/drug effects , Protein Kinase C/genetics , RNA, Messenger/drug effects , RNA, Messenger/genetics , Rhodopsin/genetics , Rhodopsin/metabolism
5.
Genet. mol. res. (Online) ; 4(2): 290-308, 30 jun. 2005. graf, tab
Article in English | LILACS | ID: lil-445286

ABSTRACT

Annotation of the transcriptome of the dimorphic fungus Paracoccidioides brasiliensis has set the grounds for a global understanding of its metabolism in both mycelium and yeast forms. This fungus is able to use the main carbohydrate sources, including starch, and it can store reduced carbons in the form of glycogen and trehalose; these provide energy reserves that are relevant for metabolic adaptation, protection against stress and infectivity mechanisms. The glyoxylate cycle, which is also involved in pathogenicity, is present in this fungus. Classical pathways of lipid biosynthesis and degradation, including those of ketone body and sterol production, are well represented in the database of P. brasiliensis. It is able to synthesize de novo all nucleotides and amino acids, with the sole exception of asparagine, which was confirmed by the fungus growth in minimal medium. Sulfur metabolism, as well as the accessory synthetic pathways of vitamins and co-factors, are likely to exist in this fungus.


Subject(s)
Expressed Sequence Tags/metabolism , Paracoccidioides/metabolism , Gene Expression Regulation, Fungal , Transcription, Genetic , Amino Acids/metabolism , Sulfur/metabolism , Phosphorylation , Carbohydrate Metabolism , Paracoccidioides/genetics , Pyrimidines/metabolism , Purines/metabolism , Fatty Acids/metabolism
6.
Genet. mol. biol ; 25(2): 217-223, Jun. 2002. ilus, tab
Article in English | LILACS | ID: lil-335792

ABSTRACT

Bemisia tabaci (Genn.) was considered a secondary pest in Brazil until 1990, despite being an efficient geminivirus vector in beans and soybean. In 1991, a new biotype, known as B. tabaci B biotype (=B. argentifolii) was detected attacking weed plants and causing phytotoxic problems in Cucurbitaceae. Nowadays, B. tabaci is considered one of the most damaging whitefly pests in agricultural systems worldwide that transmits more than 60 different plant viruses. Little is known about the genetic variability of these populations in Brazil. Knowledge of the genetic variation within whitefly populations is necessary for their efficient control and management. The objectives of the present study were to use RAPD markers (1) to estimate the genetic diversity of B. tabaci populations, (2) to study the genetic relationships among B. tabaci biotypes and two other whitefly species and (3) to discriminate between B. tabaci biotypes. A sample of 109 B. tabaci female individuals obtained from 12 populations in Brazil were analyzed and compared to the A biotype from Arizona (USA) and B biotype from California (USA) and Paraguay. Trialeurodes vaporariorum and Aleurodicus cocois samples were also included. A total of 72 markers were generated by five RAPD primers and used in the analysis. All primers produced RAPD patterns that clearly distinguished the Bemisia biotypes and the two other whitefly species. Results also showed that populations of the B biotype have considerable genetic variability. An average Jaccard similarity of 0.73 was observed among the B biotype individuals analyzed. Cluster analysis demonstrated that, in general, Brazilian biotype B individuals are scattered independently in the localities where samples were collected. Nevertheless, some clusters were evident, joining individuals according to the host plants. AMOVA showed that most of the total genetic variation is found within populations (56.70 per cent), but a significant portion of the variation is found between crops (22.73 per cent). The present study showed that the B biotype is disseminated throughout the sampled areas, infesting several host plants and predominates over the A biotype


Subject(s)
Animals , Brazil , Genetic Variation , Insecta , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL