Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-1021315

ABSTRACT

BACKGROUND:Ankylosing spondylitis is a chronic inflammatory disease with chronic rheumatic immunity.Soft tissue ossification and fusion and spinal stiffness can cause biomechanical changes. OBJECTIVE:To reconstruct the lumbar-sacral intervertebral disc in ankylosing spondylitis patients with lumbar kyphosis by finite element analysis,and to study the range of motion of each segment of T11-S1 and the biomechanical characteristics of annulus fibrosus and nucleus pulposus. METHODS:The imaging data were obtained from an ankylosing spondylitis patient with lumbar kyphosis.The original CT image data of continuously scanned spine were imported into Mimics 21.0 in DICOM format,and T11-S1 was reconstructed respectively.The established model was imported into 3-Matic software in the format of"Stl"to reconstruct the intervertebral disc,and the fibrous intervertebral disc model was obtained.The improved model was further imported into Hypermesh software,and the vertebra,nucleus pulposus,annulus fibrosus and ligament were mesh-divided.After the material properties were given,the model was imported into ABAQUS software to observe the range of motion of each vertebral body in seven different working conditions of T11-S1,and analyze the biomechanical characteristics of each segment of annulus fibrosus and nucleus pulposus. RESULTS AND CONCLUSION:(1)The range of motion of L1 vertebrae was higher than that of other vertebrae under six different working conditions:extension,forward flexion,rotation(left and right),and lateral flexion(left and right).The maximum range of motion was 2.18° during L1 vertebral flexion,and the minimum range of motion was 0.12° during L5 vertebral extension.(2)The annular fiber flexion at L2-L3 segments was greater than the extension(P<0.05),and the annular fiber flexion at L3-L4 and L4-L5 segments was less than the extension(P<0.05).The left rotation of L1-L2 annular fibers was greater than the right rotation(P<0.05).The left flexion of the annulus was greater than the right flexion in L1-L2,L2-L3,L3-L4,L4-L5 and L5-S1 segments(P<0.05).(3)The nucleus pulposus stresses of T11-L12,L1-L2,L2-L3,L3-L4 and L4-L5 segments in forward flexion were greater than in extension(P<0.05).The left rotation of T12-L1 and L3-L4 segments was smaller than the right rotation(P<0.05),and that of T11-T12,L1-L2,and L2-L3 segments was larger than the right rotation(P<0.05).The left flexion was larger than the right flexion in the T11-S1 segment.(4)It is concluded that in ankylosing spondylitis patients with lumbar kyphosis,the minimum range of motion of the vertebral body is located at the L5 vertebral body in extension.To prevent fractures,it is recommended to avoid exercise in the extension position.During the onset of lumbar kyphosis in patients with ankylosing spondylitis,the maximum stress of the annulus fibrosus and nucleus pulposus is located in the L1-L2 segment,which is fixed and will not alter with the change of body position.The late surgical treatment and correction of deformity should focus on releasing the pressure of the annulus fibrosus and nucleus pulposus in this segment to avoid the rupture of the annulus fibrosus and the injury of the nucleus pulposus.

2.
Article in Chinese | WPRIM | ID: wpr-1021471

ABSTRACT

BACKGROUND:Ankylosing spondylitis is a progressive inflammation of spinal stiffness deformity caused by tissue ossification and fibrosis.The posture of ankylosing spondylitis patients is abnormal and their activities are limited that minor injuries can lead to thoracolumbar fractures.Traditional medical image observation limits doctors'preoperative decision planning and postoperative disease prevention for ankylosing spondylitis treatment. OBJECTIVE:Based on the spinal model of ankylosing spondylitis patients before and after posterior spinal cancellous ossification osteotomy("Y"osteotomy for short),to explore the biomechanical changes of"Y"osteotomy and fixation in the treatment of ankylosing spondylitis. METHODS:Based on the preoperative and postoperative CT images of an ankylosing spondylitis patient who went to the Second Affiliated Hospital of Inner Mongolia Medical University,a three-dimensional spine model(T11-S1)before and after"Y"osteotomy(L3 osteotomy)was reconstructed in Mimics 19.0 software.A 7.5 Nm torque was applied to the top of T11 vertebral body to simulate the movement of the spine under six conditions:flexion,extension,left bending,right bending,left rotation and right rotation.Finally,the range of motion of each vertebral body,the stress of each intervertebral disc,and the stress of the screw rod system were simulated. RESULTS AND CONCLUSION:(1)After"Y"type osteotomy and posterior fixation,the range of motion of all vertebrae in the spine decreased,and the loss rate of upper vertebrae was large(L1:77.95%).(2)The maximum stress of the spinal intervertebral disc before operation occurred at the L1-L2 segment(0.55 MPa),and the maximum stress of the spinal intervertebral disc after operation occurred at the T11-T12 segment(0.50 MPa),and the stress of intervertebral disc below T12 was far less than that before operation.(3)The maximum stress of the screw rod system(166.67 MPa)occurred in the upper and middle segments of the rod body and the root of the pedicle screw.(4)In conclusion,the"Y"type posterior fixation operation enhances the stability of the spine and reduces the range of motion of the spine.The vertebral body decompression of the fixed segment is great and the stress-shielding phenomenon of the lower vertebral body is significant.The stiffness of the rod body and the stress concentration area of the pedicle screw should be strengthened to avoid the fracture of the rod caused by stress fatigue.

3.
Article in Chinese | WPRIM | ID: wpr-482020

ABSTRACT

BACKGROUND:There are many experimental studies about compression mechanics of femur after hip replacement at home and aboard. Therefore, it is very important to study the torque, torsion angle, load-displacement relationship of femur after hip replacement. Comparing and analyzing the properties of compression and torsional mechanics of traditional-type prosthesis and anatomical-type prosthesis is of important significance for studying hip replacement and the stability of artificial prosthesis. OBJECTIVE:To compare and analyze the stability of traditional-type prosthesis and anatomical-type prosthesis by stimulating femoral axial compression and torsion tests after hip replacement, so as to provide biomechanical parameters for clinic practice. METHODS: Twelve specimens of left- and/or right-side femur were selected. The femoral necks of 6 left-side femur specimens were retained as the anatomical-type titanium artificial joint prosthesis group, and the femoral necks of the 6 right-side femur specimens were removed as the traditional-type cobalt-chromium-molybdenum artificial joint prosthesis group. The femur specimens in these two groups were respectively placed onto the electronic universal testing machine workbench and were imposed compression stress at the experimental velocity of 5 mm/min. The corresponding displacement values were read under the force of 20, 40, 60, 80 and 100 N. And then, both ends of the femur specimens from these two groups were placed within the chuck of torsion testing machine, and were imposed torque at the experimental velocity of 1(°)/s. The corresponding torsion angle values were read under the torque force of 5, 10, 15 and 20 N?m. RESULTS AND CONCLUSION: Under the external force of 100 N, the displacement was (2.03±0.06) mm in the traditional-type prosthesis group, and (1.83±0.05) mm in the anatomical-type prosthesis group. Under the torque force of 20 N?m, the torsion angle values of traditional-type prosthesis was (21.7±0.7)°, and that of anatomical-type prosthesis was (13.2±0.4)°. The displacement under the external force of 100 N and the torsion angle values under the torque force of 20 N?m in the anatomical-type prosthesis group were al significantly less than those in the traditional-type prosthesis group (P < 0.05). These results suggest that traditional-type and anatomical-type prostheses have different compression and torsion mechanical properties. The anatomical-type femur prosthesis has a better stability than traditional-type femur prosthesis.

SELECTION OF CITATIONS
SEARCH DETAIL