Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 48(3): 530-536, July-Sept. 2017. graf
Article in English | LILACS | ID: biblio-889139

ABSTRACT

Abstract Mangrove is an important ecosystem in the world. Mangrove ecosystems have a large capacity in retaining heavy metals, and now they are usually considered as sinks for heavy metals. However, the mechanism of why the soil of mangrove ecosystems can retain heavy metal is not certain. In this research, endophytic fungus Purpureocillium sp. A5 was isolated and identified from the roots of Kandelia candel. When this fungus was added, it protected the growth of K. candel under Cu stress. This can be illustrated by analyzing chlorophyll A and B, RWC and WSD to leaves of K. candel. Purpureocillium sp. A5 reduces uptake of Cu in K. candel and changes the pH characterization of soil. Furthermore, A5 increase the concentration of Cu complexes in soil, and it enhanced the concentration of carbonate-bound Cu, Mn-Fe complexes Cu and organic-bound Cu in soil. Nevertheless, a significant reduction of the Cu ion was noted among A5-treated plants. This study is significant and illustrates a promising potential use for environmental remediation of endophytes, and also may partially explain the large capacity of mangrove ecosystems in retaining heavy metals.


Subject(s)
Copper/metabolism , Rhizophoraceae/metabolism , Rhizophoraceae/microbiology , Endophytes/metabolism , Hypocreales/metabolism , Soil/chemistry , Soil Microbiology , Plant Roots/metabolism , Plant Roots/microbiology , Copper/analysis , Endophytes/isolation & purification , Endophytes/genetics , Hypocreales/isolation & purification , Hypocreales/genetics
SELECTION OF CITATIONS
SEARCH DETAIL