Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Radiation Oncology ; (6): 248-253, 2023.
Article in Chinese | WPRIM | ID: wpr-993182

ABSTRACT

Objective:To improve the quality assurance (QA) skills of radiotherapy personnel and medical students and reduce the radiation risk of training by developing a remote training system for QA of medical electronic linear accelerators.Methods:This training system was built based on radiotherapy technology and quality control contents of medical electronic linear accelerators, and a virtual reality interactive software was developed using extended reality (XR) technology Unity 3D. A remote control module of multi-terminal platform was also developed. A multi-perspective evaluation system was adopted and a questionnaire was designed to analyze the application value of this system.Results:The training system reproduced the live environment and physical objects of medical electronic linear accelerator treatment room. It built a multi-terminal virtual simulation training system with radiotherapy technology as well as QA knowledge system. This system could provide 5G remote control of medical electronic linear accelerator for off-site quality control demonstration and guidance. By March 1, 2022, a total number of 133 people had been trained using this system, 76 valid questionnaires had been taken, of which 90.79% (69/76) of the respondents trusted the experimental results shown by the system and 88.16% (67/76) of the respondents considered the training system necessary.Conclusions:The training effect of this system is widely recognized. It fundamentally reduces the training radiation hazard and provides reference for the reform and progress of QA training mode of medical electronic linear accelerators.

2.
Chinese Journal of Radiation Oncology ; (6): 1059-1064, 2021.
Article in Chinese | WPRIM | ID: wpr-910514

ABSTRACT

Objective:To explore the application value of skin lead marker combined with iSCOUT image-guided positioning system in monitoring and correcting the setup error of intensity-modulated radiotherapy (IMRT) for breast cancer and calculate the PTV margin, aiming to provide reference for clinical practice.Methods:25 breast cancer patients treated with IMRT after modified radical mastectomy in Fujian Medical University Union Hospital from April to August 2019 were enrolled in this study. The skin lead marker combined with iSCOUT image-guided positioning system was employed for image-guided positioning based on the gold standard registration algorithm. Initial setup errors on the x (lateral), y (craniocaudal) and z (anteroposterior) axis and residual errors after the position correction were recorded and analyzed. The effect of the errors before and after image-guided correction upon the plan dose was compared and the reasonable PTV margin was calculated.Results:25 patients received 150 times of positioning verification using skin lead marker combined with iSCOUT image-guided positioning system. The absolute residual errors on the x-, y-and z-axis were (1.53±0.96), (1.30±0.99) and (1.34±0.92) mm, significantly smaller than the initial setup errors of (2.63±2.12), (2.41±2.45) and (3.07±2.77) mm (all P<0.001). The percentage of dose deviation due to residual errors was also smaller than that of the initial errors. Significant differences were observed in D 98%, D 2%, D max of PTV, D max of the heart, D max of the healthy breast, and D mean of the affected lung and both lungs. The percentage deviation from the original plan was decreased from 2.18%, 3.19%, 10.66%, 8.75%, 48.21%, 10.50%, and 3.66% to 0.38%, 0.23%, 2.31%, 0.04%, 13.78%, 6.35% and 0.41%, respectively (all P<0.05). PTV margins on the x-, y-and z-axis after correction were calculated as 1.87, 1.75 and 1.69 mm, respectively. Conclusion:It is feasible and valuable to apply the skin lead marker combined with iSCOUT image-guided positioning system in the positioning verification and correction of breast cancer radiotherapy position, providing novel reference for clinical PTV margin.

3.
Chinese Journal of Radiation Oncology ; (6): 1070-1074, 2020.
Article in Chinese | WPRIM | ID: wpr-868730

ABSTRACT

Objective:To develop a remote training system for CT simulation positioning of radiotherapy using virtual reality technology, and to explore a new method of medical training.Methods:The 3DMax and Maya were employed to establish the 3D model. The unity3D engine was adopted to develop 3D virtual operation and interaction system. Java spring MVC architecture was utilized as the system background service. MySQL was used as the background database system. The users were assigned into two roles: teacher and student, and the modes were divided into teaching and assessment modes.Results:The function of the system covered the whole process of CT simulation positioning, mainly including modules of patient information management, CT simulation positioning machine cognition, body position fixation technology, CT positioning scanning, and emergency handling, etc. Since it was put into use in 2018, the system has been running stably, with 14 920 pages views and an 86.66% pass rate. Compared with the traditional training, the training efficiency has been significantly improved and has received unanimous recognition.Conclusions:The remote training system can effectively improve the clinical practice ability and humanistic care ability of the trainees, which has good autonomy, sharing, and innovation. At present, the system has been put online and has strong popularization with prospects for broad application.

4.
Chinese Journal of Radiation Oncology ; (6): 624-628, 2018.
Article in Chinese | WPRIM | ID: wpr-708249

ABSTRACT

High dose grid radiotherapy ( GRID ) refers to a single fraction of high-dose radiation ( 10-25 Gy) in which, beams are divided into multiple small beam lets through a grid collimator or MLC, resulting in non-uniform dose distribution of high and low dose area ("peak-to-valley" effect) in the target volume. Recently, as 3D radiotherapy ( 3DRT) technology emerged, the 2D GRID has been reconfigured into 3D dose LATTICE whereby high doses are concentrated at each lattice vertex within the radiation target volume with drastically lower dose between vertices through multiple focused non-coplanar beams with different radiation techniques. Compared with 2D GRID therapy, 3D LATTICE shows significant effect on"peak-to-valley" and minimizes radiation to surrounding tissues. Experimental and clinical data have shown that LATTICE therapies can reduce toxicity to normal tissue while stimulating bystander effects, endothelial cell death and immunogenic abscopal effects leading to enhanced killing of tumor cells and further improve the control of the local and distant disease. The clinic experience with LATTICE, although limited, has demonstrated favorable outcomes, especially for treating bulky tumors and palliative intend. The exact mechanism of the clinical advantages by LATTICE is not explicitly known and a more comprehensive biological study and clinical trials are called should be carried out.

SELECTION OF CITATIONS
SEARCH DETAIL