Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Yonsei Medical Journal ; : 245-251, 2009.
Article in English | WPRIM | ID: wpr-202314

ABSTRACT

PURPOSE: Outcomes in 6 neonates with pulmonary atresia and intact ventricular septum (PAIVS) undergoing radiofrequency pulmonary valvulotomy and valvuloplasty (RPVV) were reported to identify the factors favorable for RPVV as the treatment of choice. MATERIALS AND METHODS: From May 2000 to January 2008, 6 patients with PAIVS were included in this retrospective study. They were aged 1 day to 90 days old. Study modalities included review of recordings of presentations and profiles of chest radiography, electrocardiography, echocardiography, and cardiac catheterization with angiography. Hemodynamic profiles from the echocardiography and the cardiac catheterization were analyzed. RESULTS: Echocardiography showed severe tricuspid regurgitation, membranous atresia of the pulmonary valve, intact ventricular septum, patent ductus arteriosus, and hypoplastic right ventricle in 6 patients. The pulmonary valve annulus were 4.2 to 6.9 mm in diameters, and those of the tricuspid valve were 7.1 to 10.1 mm. Elevated serum level of cardiac enzymes were found in 1 patient with ventriculocoronary communication (VCC). At cardiac catheterization, the ratio of systolic pressure of the right ventricle to that of the left ventricle ranged from 1.43 to 2.33 before RPVV, and from 0.54 to 1.15 after RPVV (p=0.027). The pressure gradients ranged from 76 to 136 mmHg before RPVV, and from 15 to 39 mmHg after RPVV (p=0.028). The echocardiographic gradients ranged from 16 to 32 mmHg within 24 hours after RPVV, and from 15 to 50 mmHg at the follow-ups. CONCLUSION: RPVV can be a treatment of choice for neonates with PAIVS, if there is patent infundibulum, no right-ventricular dependent coronary circulation, and adequate tricuspid valve and pulmonary valve.


Subject(s)
Female , Humans , Infant, Newborn , Male , /methods , Echocardiography , Cardiac Catheterization/methods , Hemodynamics , Pulmonary Atresia/surgery , Pulmonary Valve/abnormalities , Treatment Outcome , Ventricular Septum
2.
Yonsei Medical Journal ; : 90-102, 2008.
Article in English | WPRIM | ID: wpr-98876

ABSTRACT

PURPOSE: We reviewed the cases of 33 patients from our clinic and 142 patients from the literature with congenital bronchopulmonary vascular malformations (BPVM), systematically analyzed the bronchopulmonary airways, pulmonary arterial supplies, and pulmonary venous drainages, and classified these patients by pulmonary malinosculation (PM). MATERIALS AND METHODS: From January 1990 to January 2007, a total of 33 patients (17 men or boys and 16 women or girls), aged 1 day to 24 years (median, 2.5 months), with congenital BPVM were included in this study. Profiles of clinical manifestations, chest radiographs, echocardiographs, esophagographs, computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), cardiac catheterizations with angiography, contrast bronchographs, bronchoscopies, chromosomal studies, surgeries, and autopsies of these patients were analyzed to confirm the diagnosis of congenital BPVM. A total of 142 cases from the literature were also reviewed and classified similarly. RESULTS: The malformations of our 33 patients can be classified as type A isolated bronchial PM in 13 patients, type B isolated arterial PM in three, type C isolated venous PM in two, type D mixed bronchoarterial PM in five, type F mixed arteriovenous PM in one, and type G mixed bronchoarteriovenous PM in nine. CONCLUSION: Dysmorphogeneses of the primitive foregut system and the primitive aortic arch system may lead to haphazard malinosculations of the airways, arteries, and veins of the lung. A systematic classification of patients with congenital BPVM is clinically feasible by assessing the three basic bronchovascular systems of the lung independently.


Subject(s)
Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Aorta, Thoracic/abnormalities , Intestines/abnormalities , Lung/abnormalities , Vascular Malformations/classification
SELECTION OF CITATIONS
SEARCH DETAIL