Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 116: e200513, 2021. tab, graf
Article in English | LILACS | ID: biblio-1154879

ABSTRACT

BACKGROUND Different strategies for improvement of malaria control and elimination are based on the blockage of malaria parasite transmission to the mosquito vector. These strategies include the drugs that target the plasmodial sexual stages in humans and the early developmental stages inside mosquitoes. OBJECTIVES Here we tested Malaria Box compounds in order to evaluate their activity against male and female gametocytes in Plasmodium berghei, mosquito infection in P. vivax and ookinete formation in both species. METHODS/FINDINGS The membrane feeding assay and the development of ookinetes by a 24 h ex vivo culture and the ookinete yield per 1000 erythrocytes were used to test transmission-blocking potential of the Malaria Box compounds in P. vivax. For P. berghei we used flow cytometry to evaluate male and female gametocyte time course and fluorescence microscopy to check the ookinete development. The two species used in this study showed similar results concerning the compounds' activity against gametocytes and ookinetes, which were different from those in P. falciparum. In addition, from the eight Malaria Box compounds tested in both species, compounds MMV665830, MMV665878 and MMV665941 were selected as a hit compounds due the high inhibition observed. CONCLUSION Our results showed that P. berghei is suitable as an initial screening system to test compounds against P. vivax.


Subject(s)
Animals , Plasmodium berghei/drug effects , Plasmodium vivax/drug effects , Malaria, Vivax/prevention & control , Mosquito Vectors/parasitology , Malaria, Vivax/drug therapy , Malaria, Vivax/transmission
2.
Mem. Inst. Oswaldo Cruz ; 109(5): 598-601, 19/08/2014. tab, graf
Article in English | LILACS | ID: lil-720422

ABSTRACT

In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms. .


Subject(s)
Animals , Humans , Antibodies, Protozoan/immunology , /immunology , Erythrocytes/parasitology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Asymptomatic Infections , CHO Cells , Cricetulus , Cell Adhesion/genetics , Cell Adhesion/immunology , Erythrocytes/immunology , Flow Cytometry , Gene Expression Profiling , Malaria, Falciparum/parasitology , Protozoan Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL