Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
China Journal of Chinese Materia Medica ; (24): 608-613, 2023.
Article in Chinese | WPRIM | ID: wpr-970529

ABSTRACT

This paper introduced the overview of the "eight trends" of Chinese medicinal materials(CMM) industry in 2021, analyzed the problems of CMM production, and put forward development suggestions. Specifically, "eight trends" could be summarized as follows.(1) The growing area of CMM tended to be stable, and some provinces began to release the local catalog of Dao-di herbs.(2) The protection process of new varieties accelerated, and a number of excellent varieties were bred.(3) The theory of ecological cultivation was further enriched, and the demonstration effect of ecological cultivation technology was prominent.(4) Some CMM realized complete mechanization and formed typical model cases.(5) The number of cultivation bases using the traceability platform increased, and provincial internet trading platforms were set up.(6) The construction of CMM industrial clusters accelerated, and the number of provincial-level regional brands increased rapidly.(7) Many new agricultural business entities were founded nationwide, and a variety of methods were used to drive the intensified development of CMM.(8) A number of local TCM laws were promulgated, and the management regulation of food and medicine homology substances catalogs was issued. On this basis, four suggestions for CMM production were proposed.(1) It is suggested to speed up the formulation of the national catalog of Dao-di herbs and carry out the certification of Dao-di herbs production bases.(2) Ecological planting of forest and grassland medicine should be further strengthened in terms of technical research and promotion based on the principle of ecological priority.(3) The basic work of disaster prevention should be paid more attention and technical measures for disaster mitigation should be developed.(4) The planted area of commonly used CMM should be incorporated into the national regular statistical system.


Subject(s)
Agriculture , Certification , Commerce , Industry , China
2.
China Journal of Chinese Materia Medica ; (24): 4620-4633, 2023.
Article in Chinese | WPRIM | ID: wpr-1008629

ABSTRACT

Tigliane type macrocyclic diterpenoids with special structures and diverse bioactivities are mainly extracted from plants of Euphorbiaceae and Thymelaeaceae. According to the different functional groups, they can be classified into types of phorbol esters, C-4 deoxyphorbol esters, C-12 deoxyphorbol esters, C-16 or C-17 substituted phorbol esters and others. Most of them present promising antiviral activities and cytotoxic activities and are expected to be developed as candidates for anti-AIDS, anti-tuberculosis, and anti-tumor clinical trials, demonstrating great potential for the application in healthcare. This paper reviews 115 novel tigliane-type diterpenoids discovered since 2013 and summarize their chemical structures and bioactivities, aiming to lay a foundation for further development and utilization of these compounds and provide new ideas for the development of clinical drugs.


Subject(s)
Phorbols , Molecular Structure , Diterpenes/chemistry , Antiviral Agents , Phorbol Esters
3.
China Journal of Chinese Materia Medica ; (24): 4545-4551, 2023.
Article in Chinese | WPRIM | ID: wpr-1008623

ABSTRACT

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Subject(s)
Medicine, Chinese Traditional , Equipment Reuse , Goals , Environmental Pollution , Economic Development , Carbon , China
4.
China Journal of Chinese Materia Medica ; (24): 3730-3735, 2023.
Article in Chinese | WPRIM | ID: wpr-981505

ABSTRACT

Artemisia stolonifera is a relative of A. argyi. The two species are difficult to be distinguished due to the similarity in leaf shape and have even less distinctive features after processing. This study aims to establish a method to quickly distinguish between them. At the same time, we examined the reasonability and applicability of the specific polymerase chain reaction(PCR) method. The C/T single nucleotide polymorphism was detected at the position 202 of the sequence, based on which specific primers were designed to identify these two species. The PCR with the specific primer JNC-F and the universal primer ITS3R produced a specific band at 218 bp for A. argyi and no band for A. stolonifera, which can be used to detect at least 3% of A. argyi samples mixed in A. stolonifera samples. The PCR with the specific primer KY-F and the universal primer ITS3R produced a specific band at 218 bp for A. stolonifera and no band for A. argyi, which can be used to detect at least 5% of A. stolonifera samples mixed with A. argyi. The limit of detection of the established method was 5 ng DNA. The established PCR method can accurately distinguish between A. stolonifera and A. argyi, which provides an experimental basis for the quality control of A. stolonifera and determines whether the herbs are adulterated.


Subject(s)
Artemisia/genetics , Trichomes , Polymerase Chain Reaction , Nucleic Acid Amplification Techniques , Plant Leaves/genetics
5.
China Journal of Chinese Materia Medica ; (24): 3678-3683, 2023.
Article in Chinese | WPRIM | ID: wpr-981497

ABSTRACT

The study of classical prescriptions should probe into not only the history but also the formation methodology. As a representative of the logic thoughts in ancient China, the class concept has gone through long history, with the theoretical system completed by Biemo in the late Warring States period. The Mohist school, proposing the class concept, plays an important role in the history of Chinese logic and world logic, and its theory has also been inherited and developed by scholars of the same era and later generations. The study of the class concept will contribute to the integration of scientific methodologies between the east and the west. Exploring the impact of the class concept on traditional Chinese medicine(TCM), especially the application in classical prescriptions, may be a path worth exploring for further studying the thought of the Treatise on Febrile and Miscellaneous Diseases(Shang Han Za Bing Lun).

6.
China Journal of Chinese Materia Medica ; (24): 3421-3439, 2023.
Article in Chinese | WPRIM | ID: wpr-981478

ABSTRACT

Chinese medicinal resources are the material basis for the survival and development of traditional Chinese medicine(TCM)and the sustainable development of Chinese medicinal resources is also an important project for the modernization of TCM in China. With the increasing demand for Chinese medicinal resources in China, over-exploitation has destroyed Chinese medicinal resources, resulting in a shortage of many natural medicinal resources in China and making the sustainable development of TCM in trouble. The introduced new foreign medicinal resources have become effective supplement and replacement for Chinese medicinal resources to some extent. However, the development and utilization of new foreign medicinal resources in China are different. To fully understand the development of new foreign medicinal resources in China, this paper, taking 43 new foreign medicinal resources such as Acacia nilotica as objects, sorted out the introduction forms and policies of new foreign medicinal resources, overviewed its current development status in China, summarized the application experience of new foreign medicinal resources in the place of origin, as well as the research progress and problems of new foreign medicinal resources in China and abroad, and analyzed the research situation, which can enrich Chinese medicinal resources and other uses, promote the sustainable development of Chinese medicinal resources, and provide ideas for further development and research of new foreign medicinal resources.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Conservation of Natural Resources , Sustainable Development , Internationality , China
7.
China Journal of Chinese Materia Medica ; (24): 3140-3148, 2023.
Article in Chinese | WPRIM | ID: wpr-981449

ABSTRACT

The gene GeDTC encoding the dicarboxylate-tricarboxylate carrier protein in Gastrodia elata was cloned by specific primers which were designed based on the transcriptome data of G. elata. Bioinformatics analysis on GeDTC gene was carried out by using ExPASY, ClustalW, MEGA, etc. Positive transgenic plants and potato minituber were obtained by virtue of the potato genetic transformation system. Agronomic characters, such as size, weight, organic acid content, and starch content, of potato minituber were tested and analyzed and GeDTC gene function was preliminarily investigated. The results showed that the open reading frame of GeDTC gene was 981 bp in length and 326 amino acid residues were encoded, with a relative molecular weight of 35.01 kDa. It was predicted that the theoretical isoelectric point of GeDTC protein was 9.83, the instability coefficient was 27.88, and the average index of hydrophilicity was 0.104, which was indicative of a stable hydrophilic protein. GeDTC protein had a transmembrane structure and no signal peptide and was located in the inner membrane of mitochondria. The phylogenetic tree showed that GeDTC was highly homologous with DTC proteins of other plant species, among which GeDTC had the highest homology with DcDTC(XP_020675804.1) in Dendrobium candidum, reaching 85.89%. GeDTC overexpression vector pCambia1300-35Spro-GeDTC was constructed by double digests, and transgenic potato plants were obtained by Agrobacterium-mediated gene transformation. Compared with the wild-type plants, transgenic potato minituber harvested by transplanting had smaller size, lighter weight, lower organic acid content, and no significant difference in starch content. It is preliminarily induced that GeDTC is the efflux channel of tricarboxylate and related to the tuber development, which lays a foundation for further elucidating the molecular mechanism of G. elata tuber development.


Subject(s)
Gastrodia/genetics , Phylogeny , Amino Acids , Cloning, Molecular
8.
China Journal of Chinese Materia Medica ; (24): 3132-3139, 2023.
Article in Chinese | WPRIM | ID: wpr-981448

ABSTRACT

Strigolactones(SLs) are a class of sesquiterpenoids derived from the carotenoid biosynthesis pathway with the core carbon skeleton consisting of tricyclic lactone(ABC tricyclic ring) and α,β-unsaturated furan ring(D ring). SLs are widely distributed in higher plants and are symbiotic signals between plants and Arbuscular mycorrhiza(AM), which play key roles in the evolution of plant colonizing terrestrial habitats. As a new type of plant hormone, SLs possess such important biological functions as inhibiting shoot branching(tillers), regulating root architecture, promoting secondary growth, and improving plant stress resistance. Therefore, SLs have attracted wide attention. The biological functions of SLs are not only closely related to the formation of "excellent shape and quality" of Chinese medicinal materials but also have important practical significance for the production of high-quality medicinal materials. However, SLs have been currently widely studied in model plants and crops such as Oryza sativa and Arabidopsis thaliana, and few related studies have been reported on SLs in medicinal plants, which need to be strengthened. This review focused on the latest research progress in the isolation and identification, biological and artificial synthesis pathways, biosynthesis sites and transport modes, signal transduction pathways and mechanisms, and biological functions of SLs, and prospected the research on the regulation mechanism of SLs in the growth and development of medicinal plants and their related application on targeted regulation of Chinese herbal medicine production, which is expected to provide some references for the in-depth research on SLs in the field of Chinese medicinal resources.


Subject(s)
Arabidopsis , Lactones , Plants, Medicinal
9.
China Journal of Chinese Materia Medica ; (24): 3125-3131, 2023.
Article in Chinese | WPRIM | ID: wpr-981447

ABSTRACT

Dao-di medicinal materials produced in a specific environment always present excellent appearance and high quality. Because of the unique appearance, Ginseng Radix et Rhizoma is regarded as a paradigm in the research on excellent appearance. This paper systematically summarized the research progress in the genetic and environmental factors influencing the formation of the excellent appearance of Ginseng Radix et Rhizoma, aiming to provide reference for the quality improvement of Ginseng Radix et Rhizoma and the scientific connotation of Dao-di Chinese medicinal materials. The Ginseng Radix et Rhizoma with high quality generally has a robust and long rhizome, a large angle between branch roots, and the simultaneous presence of a robust basal part of rhizome, adventitious roots, rhizome bark with circular wrinkles, and fibrous roots with pearl points. The cultivated and wild Ginseng Radix et Rhizoma have significant differences in the appearance and no significant difference in the population genetic diversity. The differences in the appearance are associated with cell wall modification, transcriptional regulation of genes involved in plant hormone transduction, DNA methylation, and miRNA regulation. The rhizosphere soil microorganisms including Fusarium and Alternaria, as well as the endophytes Trichoderma hamatum and Nectria haematococca, may be the key microorganisms affecting the growth and development of Panax ginseng. Cultivation mode, variety, and root exudates may be the main factors influencing the stability of rhizosphere microbial community. Ginsenosides may be involved in the formation of the excellent appearance. However, most of the available studies focus on the partial or single factors in the formation of Dao-di medicinal materials, ignoring the relationship within the complex ecosystems, which limits the research on the formation mechanism of Dao-di medicinal materials. In the future, the experimental models for the research involving genetic and environmental factors should be established and mutant materials should be developed to clarify the internal relationship between factors and provide scientific support for the research on Dao-di medicinal materials.


Subject(s)
Alternaria , Microbiota , Panax/genetics , Rhizome
10.
China Journal of Chinese Materia Medica ; (24): 3118-3123, 2023.
Article in Chinese | WPRIM | ID: wpr-981442

ABSTRACT

Poria(Fu Ling) is a bulk traditional Chinese medicine(TCM)with a long history and complex varieties. The royal medical records of the Qing Dynasty include multiple medicinal materials of Fu Ling, such as Bai Fu Ling(white Poria), Chi Fu Ling(rubra Poria), and Zhu Fu Ling(Poria processed with cinnabaris). The Palace Museum preserves 6 kinds of specimens including Fu Ling Ge(dried Poria), Bai Fu Ling, Chi Fu Ling, Zhu Fu Ling, Bai Fu Shen(white Poria cum Radix Pini), and Fu Shen Mu(Poria cum Radix Pini). After trait identification and textual research, we found that Fu Ling Ge was an intact sclerotium, which was processed into Fu Ling Pi(Poriae Cutis), Bai Fu Ling and other medicinal materials in the Palace. The Fu Ling in the Qing Dynasty Pa-lace was mainly from the tribute paid of the officials in Yunnan-Guizhou region. The tribute situation was stable in the whole Qing Dynasty, and changed in the late Qing Dynasty. The cultural relics of Fu Ling in the Qing Dynasty Palace confirm with the archival documents such as the royal medical records and herbal medicine books, providing precious historical materials for understanding Fu Ling in the Qing Dynasty and a basis for the restoration of the processing of the Fu Ling in the Qing Dynasty Palace.


Subject(s)
Animals , Poria , China , Books , Coleoptera , Medical Records , Wolfiporia
11.
China Journal of Chinese Materia Medica ; (24): 2749-2756, 2023.
Article in Chinese | WPRIM | ID: wpr-981378

ABSTRACT

The present study aimed to investigate the effect of various adjuvant rice on the quality of rice-steamed Rehmanniae Radix(RSRR) with Japonica rice, millet, yellow rice, black rice, and glutinous rice as raw materials, and analyze the anti-osteoporosis effect of RSRR by the optimal adjuvant rice. On the basis of the established UPLC-MS/MS method for the determination of the content of catalpol and rehmannioside D, comprehensive weighted scoring method was employed to evaluate the effect of various auxiliary rice on the quality of RSRR with the content of catalpol and rehmannioside D, character score, and taste score as indicators to optimize adjuvant rice. The osteoporosis model was induced by ovariectomy in rats. SD rats were randomly divided into a sham operation group, a model group, a positive control group, and low-dose and high-dose groups of Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, and Epimedii Folium-RSRR. After treatment for 12 weeks, body weight, bone calcium content, and bone mineral density were mea-sured. The results showed that Japonica rice was selected as the optimal adjuvant due to the highest comprehensive score of RSRR steamed by Japonica rice. Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, as well as Epimedii Folium-RSRR, could improve osteoporosis by increasing bone calcium content and bone mineral density. RSRR was superior to Rehmanniae Radix in improving osteo-porosis. However, there was no significant difference between RSRR and steamed Rehmanniae Radix. This study confirmed that Japo-nica rice was the optimal adjuvant rice of RSRR and verified the anti-osteoporosis effect of RSRR, which laid a foundation for further research on the pharmacological action and mechanism of RSRR.


Subject(s)
Female , Rats , Animals , Oryza , Chromatography, Liquid , Calcium , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Osteoporosis/drug therapy , Rehmannia , Adjuvants, Pharmaceutic
12.
China Journal of Chinese Materia Medica ; (24): 2307-2315, 2023.
Article in Chinese | WPRIM | ID: wpr-981306

ABSTRACT

Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.


Subject(s)
Cinnamomum camphora/enzymology , Alkyl and Aryl Transferases/chemistry
13.
China Journal of Chinese Materia Medica ; (24): 2273-2283, 2023.
Article in Chinese | WPRIM | ID: wpr-981303

ABSTRACT

The active ingredients in traditional Chinese medicine(TCM)are the foundation for the efficiency of TCM and the key to the formation of Dao-di herbs. It is of great significance to study the biosynthesis and regulation mechanisms of these active ingredients for analyzing the formation mechanism of Daodi herbs and providing components for the production of active ingredients in TCM by synthetic biology. With the advancements in omics technology, molecular biology, synthetic biology, artificial intelligence, etc., the analysis of biosynthetic pathways for active ingredients in TCM is rapidly progressing. New methods and technologies have promoted the analysis of the synthetic pathways of active ingredients in TCM and have also made this area a hot topic in molecular pharmacognosy. Many researchers have made significant progress in analyzing the biosynthetic pathways of active ingredients in TCM such as Panax ginseng, Salvia miltiorrhiza, Glycyrrhiza uralensis, and Tripterygium wilfordii. This paper systematically reviewed current research me-thods for analyzing the biosynthetic functional genes of active ingredients in TCM, elaborated the mining of gene elements based on multiomics technology and the verification of gene functions in plants in vitro and in vivo with candidate genes as objects. Additionally, the paper summarized new technologies and methods that have emerged in recent years, such as high-throughput screening, molecular probes, genome-wide association studies, cell-free systems, and computer simulation screening to provide a comprehensive reference for the analysis of the biosynthetic pathways of active ingredients in TCM.


Subject(s)
Medicine, Chinese Traditional , Drugs, Chinese Herbal , Artificial Intelligence , Biosynthetic Pathways , Computer Simulation , Genome-Wide Association Study
14.
China Journal of Chinese Materia Medica ; (24): 6624-6634, 2023.
Article in Chinese | WPRIM | ID: wpr-1008861

ABSTRACT

Carthami Flos, as a traditional blood-activating and stasis-resolving drug, possesses anti-tumor, anti-inflammatory, and immunomodulatory pharmacological activities. Flavonoid glycosides are the main bioactive components in Carthamus tinctorius. Glycosyltransferase deserves to be studied in depth as a downstream modification enzyme in the biosynthesis of active glycoside compounds. This study reported a flavonoid glycosyltransferase CtUGT49 from C. tinctorius based on the transcriptome data, followed by bioinformatic analysis and the investigation of enzymatic properties. The open reading frame(ORF) of the gene was 1 416 bp, encoding 471 amino acid residues with the molecular weight of about 52 kDa. Phylogenetic analysis showed that CtUGT49 belonged to the UGT73 family. According to in vitro enzymatic results, CtUGT49 could catalyze naringenin chalcone to the prunin and choerospondin, and catalyze phloretin to phlorizin and trilobatin, exhibiting good substrate versatility. After the recombinant protein CtUGT49 was obtained by hetero-logous expression and purification, the enzymatic properties of CtUGT49 catalyzing the formation of prunin from naringenin chalcone were investigated. The results showed that the optimal pH value for CtUGT49 catalysis was 7.0, the optimal temperature was 37 ℃, and the highest substrate conversion rate was achieved after 8 h of reaction. The results of enzymatic kinetic parameters showed that the K_m value was 209.90 μmol·L~(-1) and k_(cat) was 48.36 s~(-1) calculated with the method of Michaelis-Menten plot. The discovery of the novel glycosyltransferase CtUGT49 is important for enriching the library of glycosylation tool enzymes and provides a basis for analyzing the glycosylation process of flavonoid glycosides in C. tinctorius.


Subject(s)
Carthamus tinctorius/chemistry , Phylogeny , Flavonoids/analysis , Glycosides/analysis , Glycosyltransferases/genetics , Anti-Inflammatory Agents , Chalcones
15.
China Journal of Chinese Materia Medica ; (24): 2158-2164, 2022.
Article in Chinese | WPRIM | ID: wpr-928155

ABSTRACT

Illumina Xten was employed for shallow sequencing of Panax ginseng(ginseng) samples, MISA for screening of SSR loci, and Primer 3 for primer design. Polymorphic primers were screened from 180 primers. From the successfully amplified polymorphic primers, 15 primers which featured clear peak shape, good polymorphism, and ease of statistics were selected and used to evaluate the genetic diversity and germplasm resources of 36 ginseng accessions with different fruit colors from Jilin province. The results showed that red-fruit ginseng population had high genetic diversity with the average number of alleles(N_a) of 1.031 and haploid genetic diversity(h) of 0.172. The neighbor-joining cluster analysis demonstrated that the germplasms of red-fruit and yellow-fruit ginseng populations were obviously intermixed, and pick-fruit ginseng germplasms clustered into a single clade. The results of STRUCTURE analysis showed high proportion of single genotype in pick-fruit ginseng germplasm and abundant genotypes in red-fruit and yellow-fruit ginseng germplasms with obvious germplasm mixing. AMOVA revealed that genetic variation occurred mainly within populations(62.00%, P<0.001), and rarely among populations(39%, P<0.001), but homogenization was obvious among different populations. In summary, pink-fruit ginseng population may contain rare genotypes, which is the basis for breeding of high-quality high-yield, and multi-resistance varieties, genetic improvement of varieties, and sustainable development and utilization of ginseng germplasm resources.


Subject(s)
Fruit/genetics , Genetic Variation , Microsatellite Repeats , Panax/genetics , Plant Breeding
16.
China Journal of Chinese Materia Medica ; (24): 2021-2027, 2022.
Article in Chinese | WPRIM | ID: wpr-928141

ABSTRACT

Black-bone silky fowl, sweet, pungent, and hot-natured, is one of the valuable domesticated birds with special economic value in China's genebank of poultry breed, which has a long history of medicinal and edible uses. It has the effects of tonifying liver and kidney, replenishing Qi and blood, nourishing yin, clearing heat, regulating menstruation, invigorating spleen, and securing essence. Therefore, it has remarkable efficacy of enhancing physical strength, tonifying blood, and treating diabetes and gynecological diseases. Various local black-bone silky fowl breeds have been generated due to the differences in environmental conditions, breed selection, and rearing conditions in different areas of China, which are mainly concentrated in Taihe, Wan'an, and Ji'an in Jiangxi province and Putian, Jinjiang, and Yongchun in Fujian province. The indigenous chicken breeds in China have different body sizes, appearance, coat colors, etc. The complex lineages lead to extremely unstable genetic traits. The diverse breeds similar in appearance result in the confusion in the market of silky fowl breeds. With the rapid development of molecular biological technology, the genetics of black-bone silky fowls has been intensively studied. This article reviews the research progress of the germplasm resources, genetic diversity, and breed identification of black-bone silky fowl in China at the morphology, chromosome, protein, and DNA levels. Further, it introduces the principles, application status, and limitations of DNA markers such as mitochondrial DNA, microsatellite markers, and SNPs. This review provides a theoretical basis for the mining of elite trait genes and the protection and utilization of local black-bone silky fowl germplasm resources in China.


Subject(s)
Animals , Female , Chickens/genetics , DNA, Mitochondrial , Genetic Variation , Microsatellite Repeats , Polymorphism, Single Nucleotide , Silk/genetics
17.
China Journal of Chinese Materia Medica ; (24): 1567-1572, 2022.
Article in Chinese | WPRIM | ID: wpr-928085

ABSTRACT

With the rice-steamed Rehmanniae Radix unearthed from the tomb of Haihunhou in the Western Han Dynasty as the re-ference, the present study evaluated the quality of Rehmanniae Radix and investigated the processing technology of rice-steamed Rehmanniae Radix to lay the foundation for the research on rice-steamed Rehmanniae Radix products. With catalpol and rehmannioside D as the investigation indexes, the quality and grade of Rehmanniae Radix from different producing areas were evaluated with the methods in 2020 edition of Chinese Pharmacopoeia. UPLC method was established for the determination of catalpol and rehmannioside D in the rice-steamed Rehmanniae Radix. The effects of steaming time, the amount of supplementary rice, and steaming times in the rice-steamed processing on the quality of products were investigated by L_9(3~4) orthogonal test and multi-index comprehensive balance scoring method combined with the content of catalpol and rehmannioside D and appearance characteristics. At last, the stability of the processing technology was tested. The results showed that the optimal processing technology for rice-steamed Rehmanniae Radix was as follows: Rehmanniae Radix and rice(200 g∶4 g) were steamed twice at atmospheric pressure, four hours each time. The mass fractions of catalpol and rehmannioside D were 0.184% and 0.335%, respectively, and the character score was 6.5. The processing conditions are reaso-nable, stable, and feasible. It can provide a basis for the restoration of the ancient rice-steamed processing technology and references for the development of rice-steamed Rehmanniae Radix products in the future.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Oryza , Plant Extracts , Rehmannia , Technology
18.
China Journal of Chinese Materia Medica ; (24): 1144-1152, 2022.
Article in Chinese | WPRIM | ID: wpr-928036

ABSTRACT

This study steps through the future perspectives and gives the development suggestions of Chinese medicinal materials(CMM) industry by presenting the characteristics and open problems during the 13 th Five-Year Plan period. The development of CMM industry presents the following trends:(1)the development of Dao-di herbs speeds up with the increasing demand for high-quality CMM;(2)the mismatch between supply and demand is aggravating, which presses for supply-side structural reform;(3)ecological planting will become the core mode of production and bolster rural revitalization;(4)the demand for CMM with both medical and edible values keeps growing, and the antibiotic-free feed policy brings significant opportunities;(5)the "Internet Plus CMM" wave emerges, which promotes the construction of traceability system. Finally, we put forward the following suggestions for the sustainable development of CMM industry:(1)optimizing the layout for the production of Dao-di herbs according to local conditions;(2)strengthening the commercialization of the seeds and the breeding, multiplication, and extension of CMM to accelerate the realization of specialized seed production, mechanized seed processing, localized variety layout, and county-based unified seed supply;(3)ensuring the safety of pesticide use and accelerating the registration of special pesticides;(4)promoting both theoretical and practical research on ecological production of CMM;(5)publicizing the demonstration and popularization of CMM traceability system. Overall, significant progress has been achieved in the CMM industry during the 13 th Five-Year Plan period, and this industry is in a critical stage of high-quality development, facing both challenges and opportunities.


Subject(s)
China , Drugs, Chinese Herbal/analysis , Industry , Medicine, Chinese Traditional , Plant Breeding
19.
Acta Pharmaceutica Sinica ; (12): 1909-1917, 2022.
Article in Chinese | WPRIM | ID: wpr-929430

ABSTRACT

In order to reveal the molecular mechanism of the small heat shock proteins (sHSPs) involved in stress resistance and active ingredients accumulation in Salvia miltiorrhiza, a small heat shock protein gene was cloned from Salvia miltiorrhiza by reverse transcription PCR according to the transcriptome data of orange root Salvia miltiorrhiza. The gene is named SmHSP21.8 based on the molecular weight of the protein, and it contains an open reading frame of 585 bp, which encodes 194 amino acids. The results of phylogenetic analysis and amino acid sequence alignment showed that SmHSP21.8 protein belongs to the endoplasmic reticulum (ER) subfamily, and contains a conserved endoplasmic reticulum-specific DPFR-I/V-LE-H/Q-x-P motif at N-terminus. The prokaryotic expression vector pMAL-c2X-SmHSP21.8 was constructed and transformed into E. coli BL21 competent cells. The recombinant protein was successfully expressed after inducted. Temporal and spatial expression analysis showed that SmHSP21.8 gene was the highest expressed in flowers and had significant tissue specificity. The relative expression of the gene was significantly increased in seedlings after induction by 38 ℃, PEG6000, abscisic acid(ABA), and indole-3-acetic acid (IAA), indicating that SmHSP21.8 gene may be involved in abiotic stress such as high temperature and drought, as well as the response to exogenous hormones ABA and IAA. These results lay the foundation for further research on the molecular mechanism of small heat shock proteins involved in adversity stress.

20.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 133-138, 2022.
Article in English | WPRIM | ID: wpr-929243

ABSTRACT

Pueraria thomsonii has long been used in traditional Chinese medicine. Isoflavonoids are the principle pharmacologically active components, which are primarily observed as glycosyl-conjugates and accumulate in P. thomsonii roots. However, the molecular mechanisms underlying the glycosylation processes in (iso)flavonoid biosynthesis have not been thoroughly elucidated. In the current study, an O-glucosyltransferase (PtUGT8) was identified in the medicinal plant P. thomsonii from RNA-seq database. Biochemical assays of the recombinant PtUGT8 showed that it was able to glycosylate chalcone (isoliquiritigenin) at the 4-OH position and glycosylate isoflavones (daidzein, formononetin, and genistein) at the 7-OH or 4'-OH position, exhibiting no enzyme activity to flavonones (liquiritigenin and narigenin) in vitro. The identification of PtUGT8 may provide a useful enzyme catalyst for efficient biotransformation of isoflavones and other natural products for food or pharmacological applications.


Subject(s)
Cloning, Molecular , Genistein , Glucosyltransferases/metabolism , Isoflavones/pharmacology , Pueraria/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL