Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 6003-6010, 2023.
Article in Chinese | WPRIM | ID: wpr-1008798

ABSTRACT

Angelicae Sinensis Radix is one of the main Chinese medicinal materials with both medicinal and edible values. It has the functions of tonifying and activating blood, regulating menstruation and relieving pain, and moistening intestines to relieve constipation. It is mainly produced in the southeastern Gansu province, and that produced in Minxian, Gansu is praised for the best quality. The chemical components of Angelicae Sinensis Radix mainly include volatile oils, organic acids, and polysaccharides, which have anti-inflammatory, pain-relieving, anti-tumor, anti-oxidation, immunomodulatory and other pharmacological effects. Therefore, this medicinal material is widely used in clinical practice. By reviewing the relevant literature, this study systematically introduced the research status about the chemical constituents and pharmacological effects of processed Angelicae Sinensis Radix products, aiming to provide a theoretical reference and support for the future research, development, and clinical application of related drugs.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Angelica sinensis , Oils, Volatile , Anti-Inflammatory Agents , Pain
2.
Chinese Journal of Applied Physiology ; (6): 356-360, 2008.
Article in Chinese | WPRIM | ID: wpr-252769

ABSTRACT

<p><b>AIM</b>To observe the regulatory volume decrease (RVD) process of human intestine cells and investigate its ion channel mechanism.</p><p><b>METHODS</b>Cultured human intestine cells were exposed to hypotonic solution and the cell volume was measured using Coulter Counter System. RT-PCR was explored to detect the mRNA expression of Ca(2+) -activated K+ channel.</p><p><b>RESULTS</b>Human intestine cells showed a RVD process and this process could be blocked by Cl- channel blocker NPPB and K+ channel blocker TEA. Further results demonstrated the subtype of K+ channel involved in RVD was an intermediate-conductance, Ca(2+) -activated K+ channel (IK) because of its high sensitivity to clotrimazole. RT-PCR results also showed the expression of IK in this cell line.</p><p><b>CONCLUSION</b>The RVD process of intestine cell was dependent on the parallel activation of Cl- channel and K+ channel. The subtype of K+ channel in volved in the RVD process was IK channel.</p>


Subject(s)
Humans , Cell Line , Cell Size , Chloride Channels , Metabolism , Epithelial Cells , Cell Biology , Hypotonic Solutions , Intestine, Small , Cell Biology , Potassium Channel Blockers , Pharmacology , Potassium Channels , Metabolism , Potassium Channels, Calcium-Activated , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL