Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta biol. colomb ; 21(3): 495-500, set.-dic, 2016. ilus
Article in Spanish | LILACS | ID: biblio-827627

ABSTRACT

La interacción de grupos de genes, proteínas, y células es necesaria para el desarrollo de un organismo multicelular. Por tal motivo, la teoría de la complejidad puede ser una herramienta indispensable para entender cómo diversos procesos embriológicos y evolutivos suceden. Sin embargo, en la mayoría de los programas de investigación estas áreas permanecen aisladas. En un esfuerzo por crear un punto de integración entre el Evo-Devo y las ciencias de la complejidad, en este documento propongo que las dinámicas celulares de epitelios pueden tener comportamientos que se asemejan a los encontrados en sistemas complejos. Dichas dinámicas celulares, además de regular la densidad celular de los epitelios, pueden conferir alta evolucionabilidad a estos tejidos. Para lograr este objetivo, utilizo como sistema el desarrollo del primer segmento tarsal de las patas anteriores de Drosophila melanogaster. Primero doy un ejemplo en el cual dinámicas aleatorias a nivel celular pueden generar la emergencia de patrones organizados a nivel del tejido. En seguida muestro como la modificación de características morfológicas del epitelio puede generar dinámicas celulares altamente organizadas o por el contrario aleatorios. Como resultado, planteó que el desarrollo de los epitelios muestra rasgos de comportamientos complejos y propone que la retro-alimentación entre tensión mecánica y procesos celulares son básicos para entender cómo se desarrollan y evolucionan los organismos multicelulares. Estos estudios ponen en evidencia las bases mecánicas de procesos complejos que conectan diversos niveles de organización.


Gene, protein and cell interactions are vital for the development of a multicellular organism. As a result, complexity theory can be a fundamental tool to understand how diverse developmental and evolutionary processes occur. However, in most scientific programs these two fields are separated. In an effort to create a connection between the Evo-devo and complexity science, this article shows how the cell dynamics of epithelia can display behaviours with similar features to complex systems. Here, I propose that these cell dynamics, in addition to control cell density in epithelia, can provide high evolvability to this type of tissue. To achieve this goal, I used a as a systems the development of Drosophila melanogaster front legs. First, I provide an example in which order at the tissue level emerge from apparently random cell dynamics. Then, I show that small modifications in epithelial cellular components can produce highly organized or the opposite random cell dynamics. Therefore, this work shows that a developing epithelium displays signs of complex behaviours and I propose that the feedback between tension and cellular processes are key for understanding how multicellular organisms development and evolve. Such studies may reveal the mechanistic basis of complex processes that bridge several levels of organization.

2.
Acta biol. colomb ; 21(3): 509-519, set.-dic, 2016. ilus
Article in English | LILACS | ID: biblio-827629

ABSTRACT

Allometric studies measure the scaling changes between different body parts and these often have implications on understanding ecology and evolution. Although most work on allometry has described its importance during phenotypic evolution, few studies have focused on studying how entrenched developmental processes can affect allometric changes. To explore this problem, here we used the sex comb, a male-specific group of bristles with a spectacular morphological diversity among Drosophila species. By combining morphometric analysis in wild type and genetically perturbed Drosophila melanogaster and Drosophila species, we studied the allometric changes that occur in leg length and other bristle rows in concert with sex comb radiation. We show that bristle-developmental processes are important for understanding the allometric changes of Drosophila first tarsal segments. Different lines of evidence suggest that a complicated interaction between bristle spacing and movement are crucial for understanding the evolution of allometry in this system. As a result, this work shows that although the emergence of a new trait, the sex comb, can modify the allometric relationships, there is a hierarchy of ancestral developmental processes with respect to how easily they can be modified. As a result, the interconnection of developmental processes can bias the direction of morphological changes.


La alometría estudia los cambios de tamaño entre las diferentes partes del cuerpo de los seres vivos y sus implicaciones ecológicas y evolutivas. Aunque la mayoría de los estudios en esta área se han centrado en investigar la importancia de los cambios alométricos en la evolución fenótipica, pocos estudios han analizado como la interconexión de los diferentes procesos del desarrollo afectan dichos cambios de tamaño. Para investigar la relación entre los mecanismos de desarrollo y los cambios alométricos, utilizamos los peines sexuales de diferentes especies del género Drosophila. Dichas estructuras, constituidas por un grupo de sedas ubicadas en las patas anteriores de los machos, presentan una variedad morfológica sobresaliente durante la evolución. Por medio de análisis morfométricos entre diferentes especies de Drosophila, incluidas líneas de Drosophila melanogaster modificadas genéticamente, investigamos los cambios alométricos que ocurren en el tamaño de las patas y diferentes tipos de sedas como resultado de la radiación de los peines sexuales. En este trabajo presentamos evidencia que sugiere una interacción compleja entre los mecanismos del desarrollo encargados de definir la distancia entre las sedas y su movimiento. Además, mostramos que dichos mecanismos son fundamentales para entender cómo evoluciona la alometría en los segmentos tarsales. Aunque la emergencia de una nueva característica puede modificar las relaciones alométricas, los procesos ancestrales de desarrollo varían en su susceptibilidad de ser modificados. De igual forma, este trabajo muestra que la interconexión entre los diferentes procesos de desarrollo puede sesgar la dirección de los cambios morfológicos.

SELECTION OF CITATIONS
SEARCH DETAIL