Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Japanese Journal of Physical Fitness and Sports Medicine ; : 453-462, 2011.
Article in Japanese | WPRIM | ID: wpr-362616

ABSTRACT

In this study, we examined applicability of existing equations to predicting the body surface area (BSA) of children, and newly developed prediction equations for the BSA of children. BSA of 87 children of both genders (7∼12 yr) was determined by the three-dimensional photonic image scanning (3DPS), which was used as reference. BSA predicted using existing equations yielded overestimation or underestimation and/or a systematic error with respect to the reference. BSA prediction equations for boys and girls were developed using height and body mass as independent variables for the validation group and cross-validated for another group. The standard errors of estimation of the prediction equations were 105 cm<sup>2</sup> (0.9 %) for boys and 158 cm<sup>2</sup>(1.4 %) for girls. In the cross-validation group, there was no significant difference between the predicted and measured values without systematic errors. These findings indicate that existing equations cannot accurately predict BSA of children, and that the newly developed prediction equations are capable of predicting BSA of children with adequate accuracy.

2.
Japanese Journal of Physical Fitness and Sports Medicine ; : 463-474, 2009.
Article in Japanese | WPRIM | ID: wpr-362522

ABSTRACT

This study was conducted to examine the reliability of three-dimensional photonic image scanning (3DPS) for measuring body surface area (BSA), and formulate equations for predicting BSA based on 3DPS. The surface area (SA) of a cylinder with known SA and BSA of 7 males were repeatedly measured by 3DPS. BSA was determined by 3DPS for 122 subjects (25–76 yrs). BSA prediction equations for both genders were developed for the validation group (16 males and 45 females) using body height and mass as independent variables, and were cross-validated for the cross-validation group (16 males and 45 females). The standard error of measurement was 2.2cm<sup>2</sup> (0.16%). The coefficients of variation (CV) for repeated measurements of SA were less than 0.2%. The BSA of subjects did not differ significantly on any given day nor between days, with a CV of less than 1%. The coefficient of determination and standard error of estimation of the prediction equations were 0.98 and 183cm<sup>2</sup> (1.1%), respectively, for males and 0.98 and 204cm<sup>2</sup> (1.3%), respectively, for females. There was no significant difference between the predicted and measured values. In the cross-validation group, there was no significant difference between the predicted and measured values without systematic errors. These findings indicate that 3DPS is reliable for measuring BSA, and the formulated equations are valid and applicable to individuals within a wide age-range.

3.
Japanese Journal of Physical Fitness and Sports Medicine ; : 337-345, 2004.
Article in Japanese | WPRIM | ID: wpr-372115

ABSTRACT

This study aimed to estimate <I>in vivo</I> the compliance of tendon structure in human biceps brachii (BB) muscle for eight healthy male subjects. Elongation of the tendon of BB during isometric elbowflexion was directly measured by ultrasonography. Muscle force of BB (F<SUB>BB</SUB>) was calculated from the elbow flexion torque and moment arm of elbow-flexor. When the EBB increased to 80%MVC (maximum voluntary contraction), the tendinous tissue of BB was elongated 10.24±2.52 mm, horizontally. The relationship between tendon length and F<SUB>BB</SUB> was curvilinear and consisted of an initial region characterized by a large increase in tendon length with increasing F<SUB>BB</SUB> under 50%MVC, immediately followed by a linear region. The compliance of tendinous tissues, estimated from the slope of the linear region, was 0.010±0.005 mm N, and did not show a significant correlation with MVC and muscle volume of the elbow flexors, estimated from muscle thickness. The compliance value observed here was lower than those of the medial gastrocnemius muscle and the tibialis anterior muscle, reported previously using the same ultrasonic method as the present study. This may be related to the functional differences among limb muscles in various human movements.

SELECTION OF CITATIONS
SEARCH DETAIL