Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-209509

ABSTRACT

Background:After the decades of Dichlorodiphenyltrichloroethane (DDT) use, Phlebotomus argentipesreportedly developed resistance against it affecting every aspect of vector control at grass-root level. Although DDT based Indoor Residual Spray (IRS) has been replaced with Alphacypermethrine-a Synthetic Pyrethroid (SP) based insecticide, since 2016 butits successful implementation at the Visceral Leishmaniasis (VL) endemic regime of Bihar doesn’t cause much effect upon VL vector density. Furthermore, the outcomes of existing operational research works, it Original ResearchArticle had been observed that VL vectors are continuously changing its behavior under the pressure of insecticides. Methods: For validating the hypothesis, present study has been carried out at Vaishali and Patna being highly and semi-endemic sites respectively for quantifying the oriental behavior among VL vectors persuaded by the IRS and enforce them to remain alive and get trapped in light trap even after changed chemical composition of IRS i.e., SP-IRS from routine DDT-IRS. Results:Following results, a significant reduction in sand fly density (i.e., 33.09% and 29.16%) was observed for outdoor and indoor caught sand flies, collected with light trap and aspirator respectively. Significant higher no. of sand fly collection in terms of per light traps per night was recorded from the outdoor sites than thosefrom indoor habitat for each village of Vaishali and Saran district of Bihar. Higher no. of male sand flies than to that of female ones were collected from outdoor sites and only unfed female sand flies (i.e., 100%) were caught following SP-IRS from each study villages of Vaishali and Saran districts of Bihar.Conclusions:The results of higher no. of sand flies collection from the outdoor sites as compared with the indoor habitat validate the hypothesis of gradual shifting of habitat of VL vectors from endophilic to exophilic which is undoubtedly followed due to the fact of developed resistance among them against chemical constituent of IRS. Results provide very useful information about the sand fly dynamics under the impact of IRS and accordingly, advocates the combined approach of IRS along with insecticidal fogging together at a same time that could be an effective dividend for maximum VL vector control along for negotiating VL cases at par for longer duration during the maintenance phase at the VL foci.

2.
Article in English | IMSEAR | ID: sea-170294

ABSTRACT

Background & objectives: Kala-azar or visceral leishmanisis (VL) is known to be endemic in several States of India including West Bengal (WB). Only meager information is available on the vector dynamics of its vector species, Phlebotomus argentipes particularly in relation to control measure from this State. Hence, a pilot study was undertaken to assess the control strategy and its impact on vector in two endemic districts of WB, India. Methods: Two villages each from the two districts, Maldah and Burdwan, were selected for the study. Seasonal variation of sandflies was observed during pre-monsoon, post-monsoon and winter seasons. Susceptibility test of P. argentipes against DDT and bioassay on DDT sprayed wall and on long lasting insecticide nets (LN) Permanet® 2.0 were conducted as per the WHO standard methods. Results: P. argentipes density was high during March to October. Susceptibility status of P. argentipes ranged from 40 to 61.54 per cent. Bioassay test showed 57.89 per cent mortality against LN permaNet®-2.0. and 50 per cent against DDT on wall within 30 min of exposure. Interpretation & conclusions: Despite the integrated vector management approach, the sandfly population was high in the study area. The reason could be development of resistance in P. argentipes against DDT and low effectiveness of LN permaNet®-2.0. The more pragmatic step will be to conduct large studies to monitor the susceptibility level in P. argentipes against DDT.

3.
Mem. Inst. Oswaldo Cruz ; 108(2): 197-204, abr. 2013. tab, graf
Article in English | LILACS | ID: lil-670395

ABSTRACT

Visceral leishmaniasis, or kala-azar, is recognised as a serious emerging public health problem in India. In this study, environmental parameters, such as land surface temperature (LST) and renormalised difference vegetation indices (RDVI), were used to delineate the association between environmental variables and Phlebotomus argentipes abundance in a representative endemic region of Bihar, India. The adult P. argentipes were collected between September 2009-February 2010 using the hand-held aspirator technique. The distribution of P. argentipes was analysed with the LST and RDVI of the peak and lean seasons. The association between environmental covariates and P. argentipes density was analysed a multivariate linear regression model. The sandfly density at its maximum in September, whereas the minimum density was recorded in January. The regression model indicated that the season, minimum LST, mean LST and mean RDVI were the best environmental covariates for the P. argentipes distribution. The final model indicated that nearly 74% of the variance of sandfly density could be explained by these environmental covariates. This approach might be useful for mapping and predicting the distribution of P. argentipes, which may help the health agencies that are involved in the kala-azar control programme focus on high-risk areas.


Subject(s)
Animals , Female , Humans , Male , Ecosystem , Insect Vectors/classification , Phlebotomus/classification , Remote Sensing Technology , Endemic Diseases , India/epidemiology , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/transmission , Population Density , Seasons , Spatial Analysis
4.
Mem. Inst. Oswaldo Cruz ; 107(5): 609-620, Aug. 2012. ilus, tab
Article in English | LILACS | ID: lil-643746

ABSTRACT

Remote sensing and geographical information technologies were used to discriminate areas of high and low risk for contracting kala-azar or visceral leishmaniasis. Satellite data were digitally processed to generate maps of land cover and spectral indices, such as the normalised difference vegetation index and wetness index. To map estimated vector abundance and indoor climate data, local polynomial interpolations were used based on the weightage values. Attribute layers were prepared based on illiteracy and the unemployed proportion of the population and associated with village boundaries. Pearson's correlation coefficient was used to estimate the relationship between environmental variables and disease incidence across the study area. The cell values for each input raster in the analysis were assigned values from the evaluation scale. Simple weighting/ratings based on the degree of favourable conditions for kala-azar transmission were used for all the variables, leading to geo-environmental risk model. Variables such as, land use/land cover, vegetation conditions, surface dampness, the indoor climate, illiteracy rates and the size of the unemployed population were considered for inclusion in the geo-environmental kala-azar risk model. The risk model was stratified into areas of "risk"and "non-risk"for the disease, based on calculation of risk indices. The described approach constitutes a promising tool for microlevel kala-azar surveillance and aids in directing control efforts.


Subject(s)
Animals , Humans , Insect Vectors , Leishmaniasis, Visceral/epidemiology , Psychodidae , Geographic Information Systems , India/epidemiology , Leishmaniasis, Visceral/transmission , Models, Biological , Risk Assessment , Seasons , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL