Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Braz. j. biol ; 78(1): 1-12, Feb. 2018. tab, graf
Article in English | LILACS | ID: biblio-888851

ABSTRACT

Abstract Handroanthus impetiginosus has long been used in traditional medicine and various studies have determined the presence of bioactive chemical compounds and potential phytotherapeutics. In this study, the genotoxicity of the lyophilized tincture of H. impetiginosus bark (THI) was evaluated in mouse bone marrow using micronucleus assays. The interaction between THI and genotoxic effects induced by the chemotherapeutic agent, doxorubicin (DXR), was also analyzed. Experimental groups were evaluated 24 to 48 h after treatment with N-nitroso-N-ethylurea (NEU; 50 mg/kg), DXR (5 mg/kg), sodium chloride (NaCl; 150 mM), and THI (0.5-2 g/kg). Antigenotoxic assays were carried out using THI (0.5 g/kg) in combination with NEU or DXR. Analysis of the micronucleated polychromatic erythrocytes (MNPCEs) indicated no significant differences between treatment doses of THI (0.5-2 g/kg) and NaCl. Polychromatic erythrocyte (PCE) to normochromatic erythrocyte (NCE) ratios did not indicate any statistical differences between DXR and THI or NaCl, but there were differences between THI and NaCl. A significant reduction in MNPCEs and PCE/NCE ratios was observed when THI was administered in combination with DXR. This study suggested the absence of THI genotoxicity that was dose-, time-, and gender-independent and the presence of moderate systemic toxicity that was dose-independent, but time- and gender-dependent. The combination of THI and DXR also suggested antigenotoxic effects, indicating that THI reduced genotoxic effects induced by chemotherapeutic agents.


Resumo Handroanthus impetiginosus tem sido usada durante um longo período pela medicina tradicional e vários estudos têm demonstrados a presença de compostos químicos e potencial fitoterapêutico. Esta pesquisa avaliou a genotoxicidade da tintura da casca liofilizada de H. impetiginosus (THI) usando o ensaio do micronúcleo em medula óssea de camundongos. A interação entre THI e os efeitos genotóxicos induzidos pelo quimioterápico doxorrubicina (DXR) também foram analisados. Grupos experimentais foram analisados a 24-48 h após o tratamento com N-Nitroso-N-etiluréia (NEU; 50 mg/kg), DXR (5 mg/kg), NaCl (150 mM) e THI (0,5-2 g/kg). O ensaio antigenotóxico foi conduzido utilizando THI (0,5 g/kg) em combinação com NEU ou DXR. A análise de eritrócitos policromáticos micronucleados (EPCMNs) não mostrou diferenças significativas entre as doses de tratamento (0,5-2 g/kg) e NaCl. As proporções de eritrócitos policromáticos (EPC)/eritrócitos normocromáticos (ENC) não revelaram diferenças estatísticas entre DXR e THI ou NaCl, porém houve diferenças entre THI e NaCl. Uma redução significativa em EPCMNs e na razão EPC/ENC foi observada quando THI foi administrado em combinação com DXR. Essa pesquisa sugere ausência de genotoxicidade de THI, dose-, tempo- e sexo-independente, e moderada toxicidade sistêmica dose-independente, mas tempo- e sexo-dependente. A associação do THI e DXR também sugere efeitos antigenotóxicos. Por conseguinte, THI pode reduzir os efeitos genotóxicos induzidos pelo quimioterapêutico.


Subject(s)
Animals , Mice , DNA Damage/drug effects , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Plant Extracts/pharmacology , Doxorubicin/toxicity , Protective Agents/pharmacology , Micronucleus Tests , Cells, Cultured , Tabebuia/chemistry
2.
Braz. j. med. biol. res ; 26(10): 1077-83, Oct. 1993. tab
Article in English | LILACS | ID: lil-148784

ABSTRACT

In the present study, we examined the effects of exposure to methylmercury (0, 2.3, 4.6, 6.9 and 9.2 mg/kg, daily for 5 consecutive days, sc) during the second stage of rapid postnatal brain development (8 to 12 days of age) on the sulfhydryl-containing enzyme delta-aminolevulinate dehydratase (ALA-D, E.C. 4.2.1.24) from brain, liver and kidney and on motor performance (latency to complete a negative geotaxis response) of rats. ALA-D specific activity of 13-day old rats of both sexes (7-12 per group) was reduced significantly in rats treated with 6.9 mg/kg and 9.2 mg/kg in brain (about 40 per cent , P < 0.05) and in liver (about 25 per cent , P < 0.05). Renal ALA-D specific activity was not affected by methylmercury treatment. The in vitro IC50 for inhibition of brain, liver and renal ALA-D was 79.3, 81.8 and 39.1 microM, respectively. The latency to complete the negative geotaxis response of 12-day old rats was increased by 6.9 (7.9 +/- 0.7 s, mean +/- SEM) and 9.2 mg/kg methylmercury (7.8 +/- 0.5 s) when compared with control rats (5.8 +/- 0.3 s), suggesting an impairment in motor performance of exposed rats. These results demonstrate that exposure to relatively high doses of methylmercury during the second stage of brain development causes a significant reduction in brain and hepatic ALA-D. The absence of inhibition of ALA-D by lower doses may be related to the relatively low in vitro sensitivity of the enzyme to methylmercury. The possible involvement of ALA-D inhibition on the neurotoxicity of methylmercury deserves additional investigation


Subject(s)
Animals , Male , Female , Rats , Behavior, Animal/drug effects , Cerebrum/growth & development , Methylmercury Compounds/poisoning , Porphobilinogen Synthase/metabolism , Body Weight , Cerebrum/enzymology , Methylmercury Compounds/administration & dosage , Liver/enzymology , Kidney/enzymology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL