Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Maxillofacial Plastic and Reconstructive Surgery ; : 24-2020.
Article in English | WPRIM | ID: wpr-902700

ABSTRACT

Background@#In daily practice, three-dimensional patient-specific jawbone models (3D models) are a useful tool in surgical planning and simulation, resident training, patient education, and communication between the physicians in charge. The progressive improvements of the hardware and software have made it easy to obtain 3D models. Recently, in the field of oral and maxillofacial surgery, there are many reports on the benefits of 3D models. We introduced a desktop 3D printer in our department, and after a prolonged struggle, we successfully constructed an environment for the “in-house” fabrication of the previously outsourced 3D models that were initially outsourced. Through various efforts, it is now possible to supply inexpensive 3D models stably, and thus ensure safety and precision in surgeries. We report the cases in which inexpensive 3D models were used for orthodontic surgical simulation and discuss the surgical outcomes.ReviewWe explained the specific CT scanning considerations for 3D printing, 3D printing failures, and how to deal with them. We also used 3D models fabricated in our system to determine the contribution to the surgery. Based on the surgical outcomes of the two operators, we compared the operating time and the amount of bleeding for 25 patients who underwent surgery using a 3D model in preoperative simulations and 20 patients without using a 3D model. There was a statistically significant difference in the operating time between the two groups. @*Conclusions@#In this article, we present, with surgical examples, our in-house practice of 3D simulation at low costs, the reality of 3D model fabrication, problems to be resolved, and some future prospects.

2.
Maxillofacial Plastic and Reconstructive Surgery ; : 24-2020.
Article in English | WPRIM | ID: wpr-894996

ABSTRACT

Background@#In daily practice, three-dimensional patient-specific jawbone models (3D models) are a useful tool in surgical planning and simulation, resident training, patient education, and communication between the physicians in charge. The progressive improvements of the hardware and software have made it easy to obtain 3D models. Recently, in the field of oral and maxillofacial surgery, there are many reports on the benefits of 3D models. We introduced a desktop 3D printer in our department, and after a prolonged struggle, we successfully constructed an environment for the “in-house” fabrication of the previously outsourced 3D models that were initially outsourced. Through various efforts, it is now possible to supply inexpensive 3D models stably, and thus ensure safety and precision in surgeries. We report the cases in which inexpensive 3D models were used for orthodontic surgical simulation and discuss the surgical outcomes.ReviewWe explained the specific CT scanning considerations for 3D printing, 3D printing failures, and how to deal with them. We also used 3D models fabricated in our system to determine the contribution to the surgery. Based on the surgical outcomes of the two operators, we compared the operating time and the amount of bleeding for 25 patients who underwent surgery using a 3D model in preoperative simulations and 20 patients without using a 3D model. There was a statistically significant difference in the operating time between the two groups. @*Conclusions@#In this article, we present, with surgical examples, our in-house practice of 3D simulation at low costs, the reality of 3D model fabrication, problems to be resolved, and some future prospects.

3.
Maxillofacial Plastic and Reconstructive Surgery ; : 12-2019.
Article in English | WPRIM | ID: wpr-741582

ABSTRACT

BACKGROUND: Le Fort I osteotomy is one of the surgical procedures now routinely and safely performed. It is possible to move the maxilla in three dimensions, but it is necessary to separate the bones around the maxillary sinus. Therefore, with surgery, maxillary sinus mucosal thickening occurs. By knowing the changes in the sinus mucosa after surgery and the factors affecting it, it is possible to better predict the outcomes of surgery and contribute to safer surgery. In this study, thickening of maxillary sinus mucosa before and after surgery in Le Fort I osteotomy was evaluated using multidetector-row computed tomography (MDCT) images, and the changes in mucosal thickening and the related factors were examined. METHODS: Using MDCT images, the maxillary sinus mucosa of 125 patients who had undergone Le Fort I osteotomy was retrospectively evaluated before surgery, 1 month after surgery, and 1 year after surgery. On the MDCT images, the maxillary sinus was judged as mucosal thickening and classified into three grades according to the proportion occupying the maxillary sinus. In the evaluation of factors related to mucosal thickening, the following eight factors were examined: sex, age, diagnosis, operating time, amount of postoperative bleeding, with/without bone graft, with/without multisegmental osteotomy, and with/without macrolide therapy after surgery. RESULTS: The mean age at the time of surgery was 25.6 ± 8 years. Of all 125 patients, 66 had bilateral thickening, 19 had unilateral thickening, and 40 had no thickening. Factors that were significantly related to mucosal thickening were the operative time for the maxilla, bone grafts, and macrolide therapy after surgery. CONCLUSIONS: Operative time for the maxilla, bone grafts, and macrolide therapy after surgery were found to be related to mucosal thickening. In addition, MDCT scanning 1 month after surgery was considered to be appropriate for evaluation of maxillary sinus mucosal thickening.


Subject(s)
Humans , Diagnosis , Hemorrhage , Maxilla , Maxillary Sinus , Mucous Membrane , Multidetector Computed Tomography , Operative Time , Orthognathic Surgery , Osteotomy , Retrospective Studies , Transplants
SELECTION OF CITATIONS
SEARCH DETAIL