Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 57(6): 962-970, Nov-Dec/2014. tab, graf
Article in English | LILACS | ID: lil-730391

ABSTRACT

Different culture conditions viz. additional carbon and nitrogen content, inoculum size and age, temperature and pH of the mixed culture of Bifidobacterium bifidum and Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted for the cultivations using a Fractional Factorial (FF) design experiments for different variables. This novel concept of combining the optimization and modeling presented different optimal conditions for the mixture of B. bifidum and L. acidophilus growth from their one variable at-a-time (OVAT) optimization study. Through these statistical tools, the product yield (cell mass) of the mixture of B. bifidum and L. acidophilus was increased. Regression coefficients (R2) of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA). The normalized percentage mean squared error obtained from the ANN and RSM models were 0.08 and 0.3%, respectively. The optimum conditions for the maximum biomass yield were at temperature 38°C, pH 6.5, inoculum volume 1.60 mL, inoculum age 30 h, carbon content 42.31% (w/v), and nitrogen content 14.20% (w/v). The results demonstrated a higher prediction accuracy of ANN compared to RSM.

2.
Braz. arch. biol. technol ; 57(1): 15-22, Jan.-Feb. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-702564

ABSTRACT

The culture conditions viz. additional carbon and nitrogen content, inoculum size, age, temperature and pH of Lactobacillus acidophilus were optimized using response surface methodology (RSM) and artificial neural network (ANN). Kinetic growth models were fitted to cultivations from a Box-Behnken Design (BBD) design experiments for different variables. This concept of combining the optimization and modeling presented different optimal conditions for L. acidophilus growth from their original optimization study. Through these statistical tools, the product yield (cell mass) of L. acidophilus was increased. Regression coefficients (R²) of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA). The normalized percentage mean squared error obtained from the ANN and RSM models were 0.06 and 0.2%, respectively. The results demonstrated a higher prediction accuracy of ANN compared to RSM.

SELECTION OF CITATIONS
SEARCH DETAIL