Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1486-1494, 2022.
Article in Chinese | WPRIM | ID: wpr-924736

ABSTRACT

Solid dispersion, a dispersion system in which drug molecules are highly dispersed in carrier materials, has been commonly used to improve the solubility and dissolution rate of poorly soluble drugs. The miscibility between drug and carrier is crucial to improve the dissolution performance and stability of solid dispersion. Therefore, the selection of carrier types and the optimization of drug loading are very important. In the current study, the solubility parameter method and Flory-Huggins theory were used to predict the miscibility between olaparib (OLP) and different carriers (VA64, Soluplus, Plasdone S630 and Kollidon K29/32). Besides, the carrier material with good miscibility was experimentally screened by differential scanning calorimetry (DSC). The optimum of drug-carrier ratio was further performed based on the miscibility phase diagram of drug and carrier. Theoretical calculation and experimental evaluation showed that the miscibility of OLP and VA64 was the best, and the drug loading of 30% could meet the requirements of large drug loading and physical stability. Polarizing light microscope, X-ray powder diffraction, DSC and laser confocal Raman spectroscopy exhibited that OLP was amorphous form in the solid dispersion system. Powder dissolution test demonstrated that the solid dispersion showed significantly enhanced dissolution rate in comparison to crystalline OLP. In this study, theoretical calculation and experimental evaluation were used to screen the types of carriers and optimize the drug loading, which provides an efficient strategy for the selection of carrier and the amount used in solid dispersion.

2.
Acta Pharmaceutica Sinica ; (12): 585-592, 2021.
Article in Chinese | WPRIM | ID: wpr-873768

ABSTRACT

Puerarin (PUE), as an isoflavone component, has a wide range of pharmacological activities, while its poorly aqueous solubility limits the development of solid oral dosage forms. In this study, PUE along with nicotinamide (NIC) were prepared into the coamorphous system by solvent-evaporation method and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). In addition, its dissolution behavior and solubilization mechanism were also investigated. PUE-NIC coamorphous was a single homogeneous binary system, with a single glass transition temperature at 35.1 ℃. In comparison to crystalline PUE, during the dissolution process, coamorphous PUE-NIC not only exhibited the "liquid-liquid phase separation" (LLPS) phenomenon, but the formation of Ap type complexation (1∶1 and 1∶2) between PUE and NIC molecules was also verified, which significantly improved the solubility of PUE and prolonged the supersaturation time, and would benefit its absorption.

SELECTION OF CITATIONS
SEARCH DETAIL