Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Organ Transplantation ; (6): 102-111, 2024.
Article in Chinese | WPRIM | ID: wpr-1005239

ABSTRACT

Objective To explore the public attitude towards kidney xenotransplantation in China by constructing and validating the prediction model based on xenotransplantation questionnaire. Methods A convenient sampling survey was conducted among the public in China with the platform of Wenjuanxing to analyze public acceptance of kidney xenotransplantation and influencing factors. Using random distribution method, all included questionnaires (n=2 280) were divided into the training and validation sets according to a ratio of 7:3. A prediction model was constructed and validated. Results A total of 2 280 questionnaires were included. The public acceptance rate of xenotransplantation was 71.3%. Multivariate analysis showed that gender, marital status, resident area, medical insurance coverage, religious belief, vegetarianism, awareness of kidney xenotransplantation and whether on the waiting list for kidney transplantation were the independent influencing factors for public acceptance of kidney xenotransplantation (all P<0.05). The area under the curve (AUC) of receiver operating characteristic (ROC) of the prediction model in the training set was 0.773, and 0.785 in the validation set. The calibration curves in the training and validation sets indicated that the prediction models yielded good prediction value. Decision curve analysis (DCA) suggested that the prediction efficiency of the model was high. Conclusions In China, public acceptance of kidney xenotransplantation is relatively high, whereas it remains to be significantly enhanced. The prediction model based on questionnaire survey has favorable prediction efficiency, which provides reference for subsequent research.

2.
Organ Transplantation ; (6): 229-235, 2024.
Article in Chinese | WPRIM | ID: wpr-1012493

ABSTRACT

Objective To summarize the experience and practical value of living donor kidney harvesting in Bama miniature pigs with six gene modified. Methods The left kidney of Bama miniature pigs with six gene modified was obtained by living donor kidney harvesting technique. First, the ureter was occluded, and then the inferior vena cava and abdominal aorta were freed. During the harvesting process, the ureter, renal vein and renal artery were exposed and freed in sequence. The vascular forceps were used at the abdominal aorta and inferior vena cava, and the renal artery and vein were immediately perfused with 4℃ renal preservation solution, and stored in ice normal saline for subsequent transplantation. Simultaneously, the donor abdominal aorta and inferior vena cava gap were sutured. The operation time, blood loss, warm and cold ischemia time, postoperative complications and the survival of donors and recipients were recorded. Results The left kidney of the genetically modified pig was successfully harvested. Intraoperative bleeding was 5 mL, warm ischemia time was 45 s, and cold ischemia time was 2.5 h. Neither donor nor recipient pig received blood transfusion, and urinary function of the kidney transplanted into the recipient was recovered. The donor survived for more than 8 months after the left kidney was resected. Conclusions Living donor kidney harvesting is safe and reliable in genetically modified pigs. Branch blood vessels could be processed during kidney harvesting, which shortens the process of kidney repair and the time of cold ischemia. Living donor kidney harvesting contributes to subsequent survival of donors and other scientific researches.

3.
Organ Transplantation ; (6): 521-2023.
Article in Chinese | WPRIM | ID: wpr-978494

ABSTRACT

Objective To investigate the establishment of a six-gene-edited pig-to-non-human primate kidney xenotransplantation model. Methods The kidney of humanized genetically-edited pig (GTKO/β4GalNT2KO/CMAHKO/hCD55/hCD46/hTBM) was transplanted into a cynomolgus monkey. The survival of the recipient and kidney condition after blood perfusion were observed. The parenchymal echo, blood flow changes, and size of the kidney were monitored on a regular basis. Routine blood test, kidney function test and electrolyte assessment were carried out. Dynamic changes of urine, feces and body mass were monitored. At the end of life, the transplant kidney, heart, liver, spleen, lung, and cecum were collected for pathological examination. Results The recipient died at postoperative 7 d. After blood flow was restored, the kidney was properly perfused, the organ was soft and the color was normal. At the end of the recipient's life, a slight amount of purulent secretion was attached to the ventral side of the kidney, with evident congestion and swelling, showing the appearance of "red kidney". Postoperatively, the echo of renal parenchyma was increased, blood flow was decreased, the cortex was gradually thickened, and a slight amount of effusion surrounded the kidney and abdominal cavity over time. In the recipient, the amount of peripheral red blood cells, hemoglobin, albumin, and platelets was progressively decreased, and serum creatinine level was increased to 308 μmol/L at postoperative 7 d, whereas the K+ concentration did not significantly change. Light yellow urine was discharged immediately after surgery, diet and drinking water were resumed within postoperative 3 h, and light yellow and normal-shape stool was discharged. The reddish urine was gradually restored to normal color within postoperative 1 d, which were consistent with the results of the routine urine test. A large amount of brown bloody stool was discharged twice in the morning of 2 d after surgery. Omeprazole was given for acid suppression, and the stool returned to normal at postoperative 4 d. The β2-microglobulin level was increased to 0.75 mg/L at postoperative 7 d. The body mass was increased by 1.7 kg. Autopsy pathological examination showed interstitial edema and bleeding of the transplant kidney, a large amount of infiltration of lymphocytes and macrophages, infiltration of lymphocytes in the arteriole wall and arterial cavity, accompanied by arteritis changes, lymphocyte infiltration in the cecal stroma and congestion in the spleen tissues. No significant abnormal changes were observed in other organs. Conclusions The humanized genetically-edited pig-to-non-human primate kidney xenotransplantation model is successfully established, and postoperative survival of the recipient is 1 week.

SELECTION OF CITATIONS
SEARCH DETAIL