Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 1839-1845, 2014.
Article in Chinese | WPRIM | ID: wpr-446442

ABSTRACT

BACKGROUND:The auditory ossicle chain reconstruction is stil an important method to treat conductive deafness. Although a great variety of materials have been applied, the blood supply of otosteon after the implantation is ignored. Moreover, there is no real bone formed. OBJECTIVE:To observe the angiogenesis of vascular endothelial growth factor and col agen I modifiedβ-tricalcium phosphate porous scaffold which is implanted into the otocyst of guinea pig. METHODS:Total y 60 guinea pigs were randomly divided into experimental group (vascular endothelial growth factor and col agen I modifiedβ-tricalcium phosphate porous scaffold), col agen I control group (col agen I modifiedβ-tricalcium phosphate porous scaffold) and blank control group (β-tricalcium phosphate porous scaffold). The guinea pigs were executed under anesthesia at weeks 1, 2, 3, 4 respectively. The surface of scaffolds was observed by scanning electron microscopy. The angiogenesis of scaffolds were observed by hematoxylin-eosin staining and CD34 immunohistochemistry staining, and then the microvascular density was counted. The osteogenesis of the scaffolds was observed by toluidine blue staining. RESULTS AND CONCLUSION:Endothelial cel proliferation and lumen formation could be observed after 1 week in the experimental group, and the angiogenesis reach the peak after 3 weeks with traffic branches formedbetween micropores. In the other two groups, the lumen formed at 2 weeks but no traffic branches were visible. The sprouting of new blood vessels in the pores were observed more in the experimental group than the other two groups (P<0.05). The adherence and proliferation of cel s could be examined in the surface and pores of the scaffold by scanning electron microscope. After 4 weeks, the osteogenesis could be observed by toluidine blue staining, especial y in the experimental group. These findings suggest that the vascular endothelial growth factor and col agen I modifiedβ-tricalcium phosphate porous scaffold can realize an effective vascularization in the environment of guinea pigs’ middle ear. What’s more, the scaffold also can promote bone formation.

SELECTION OF CITATIONS
SEARCH DETAIL