Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
J Biosci ; 1987 Mar; 11(1-4): 59-74
Article in English | IMSEAR | ID: sea-160505

ABSTRACT

Metabolic aberrations in diabetes such as hyperglycemia, ketonemia, ketonuria, reduced glycogen in tissues and reduced rates of fatty acid synthesis in the liver are corrected by the administration of lipoic acid. Dithiol octanoic acid is formed from lipoic acid by reduction and substitutes for Coenzyme A in several enzymatic reactions such as pyruvate dehydrogenase, citrate synthase, acetyl Coenzyme A carboxylase, fatty acid synthetase, and triglyceride and phospholipid biosynthesis; but not in the oxidation of fatty acids because of the slow rates of thiolysis of ß-keto acyl dithioloctanoic acid. The overall effect of these changes in the key enzymic activities is seen in the increased rates of oxidation of glucose and a reduction in fatty acid oxidation in diabetes following lipoic acid administration.

2.
J Biosci ; 1986 June; 10(2): 171-179
Article in English | IMSEAR | ID: sea-160618

ABSTRACT

Rat liver lipoyl transacetylase catalyzes the formation of acetyl dihydrolipoic acid from acetyl coenzyme A and dihydrolipoic acid. In an earlier paper the formation of acetyl dihydrolipoic from pyruvate and dihydrolipoic acid catalyzed by pyruvate dehydrogenase has been reported. Acetyl dihydrolipoic acid is a substrate for citrate synthase, acetyl coenzyme A carboxylase and fatty acid synthetase. The Vmax. for citrate synthase with acetyl dihydrolipoic acid was identical to acetyl coenzyme A (approximately 1 μmol citrate formed/min/mg protein) while the apparent Km was approximately 4 times higher with acetyl dihydrolipoic acid as the substrate. This may be due to the fact that synthetic acetyl dihydrolipoic acid is a mixture of 4 possible isomers and only one of them may be the substrate for the enzymatic reaction. While dihydrolipoic acid can replace coenzyme A in the activation of succinate catalyzed by succinyl coenzyme A synthetase, the transfer of coenzyme A between succinate and acetoacetyl dihydrolipoic acid catalyzed by succinyl coenzyme A: 3 oxo-acid coenzyme A transferase does not occur.

3.
J Biosci ; 1985 Sept; 9(1&2): 117-127
Article in English | IMSEAR | ID: sea-160485

ABSTRACT

Intraperitoneal administration of lipoic acid (10 mg/100 g) does not effect changes in serum insulin levels in normal and alloxan diabetic rats, while normalising increased serum pyruvate, and impaired liver pyruvic dehydrogenase characteristic of the diabetic state. Dihydrolipoic acid has been shown to participate in activation of fatty acids with equal facility as coenzyme A. Fatty acyl dihydrolipoic acid however is sparsely thiolyzed to yield acetyl dihydrolipoic acid. Also acetyl dihydrolipoic acid does not activate pyruvate carboxylase unlike acetyl coenzyme A. The reduced thiolysis of ß-keto fatty acyl dihydrolipoic acid esters and the lack of activation of pyruvic carboxylase by acetyl dihydrolipoic acid could account for the antiketotic and antigluconeogenic effects of lipoic acid.

4.
J Biosci ; 1984 Oct; 6(4): 459-474
Article in English | IMSEAR | ID: sea-160343

ABSTRACT

While the dietary importance of proteins, essential fatty acids, vitamins and trace elements has been well recognised, the role of shadow nutrients, a class of metabolites, which are biosynthesized in the body and serve vital functions, such as lipoic acid, choline, inositol, taurine and carnitine, has not been adequately appreciated. There are reasons to believe that during infancy and in ageing, biosynthesis of these metabolites may be limited. The objective of this review is to highlight the essentiality of these nutrients and the need for their supplementation in the diets of infants and in elderly people. Provision of shadow nutrients where the necessary biosynthetic machinery might not have developed to full stature or might have slowed down, is a new concept in nutrition which needs attention.

5.
J Biosci ; 1984 Sept; 6(3): 315-324
Article in English | IMSEAR | ID: sea-160319

ABSTRACT

The composition of volatile fatty acids in the biogas digester based on cattle manure as substrate and stabilised at 25°C showed that it contained 87-88% branched chain fatty acids, comprising of isobutyric and isovaleric acids, in comparison to 38 % observed in the digester operating at 35°C. Mixed cellulolytic cultures equilibrated at 25°C (C-25) and 35°C (C-35) showed similar properties, but rates of hydrolysis were three times higher than that observed in a standard biogas digester. The proportion of isobutyric and isovaleric were drastically reduced when C- 25 was grown with glucose or filter paper as substrates. The volatile fatty acids recovered from C-25 (at 25°C) inhibited growth of methanogens on acetate, whereas that from C-35 was not inhibitory. The inhibitory effects were due to the branched chain fatty acids and were observed with isobutyric acid at concentrations as low as 50 ppm. Addition of another micro-organism Rhodotorula selected for growth on isobutyric completely reversed this inhibition. Results indicate that the aceticlastic methanogens are very sensitive to inhibition by branched chain fatty acids and reduction in methane formation in biogas digester at lower temperature may be due to this effect.

6.
J Biosci ; 1984 Mar; 6(1): 37-46
Article in English | IMSEAR | ID: sea-160228

ABSTRACT

Relative α-lipoic acid content of diabetic livers was considerably less than that of normal livers as determined by gas chromatography. It was not possible to detect any dihydrolipoic acid in the livers. Biochemical abnormalities such as hyperglycaemia, ketonemia, reduction in liver glycogen and impaired incorporation of [2-14C] -acetate into fatty acids in alloxan diabetic rats were brought to near normal levels by the oral or intraperitoneal administration of dihydrolipoic acid. The effect of α-lipoic acid was comparable to that of dihydrolipoic acid in reducing the blood sugar levels of diabetic rabbits during a glucose tolerance test. The results suggest that the mode of action of lipoic acid was through stimulation of pyruvate dehydrogenase.

SELECTION OF CITATIONS
SEARCH DETAIL