Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 55: e12375, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420739

ABSTRACT

The objective of this study was to evaluate the immunohistochemical expression of Dicer, Drosha, and Exportin-5 in the eutopic and ectopic endometrium of women with adenomyosis. Twenty-two paired ectopic and eutopic endometrium from women with adenomyosis and 10 eutopic endometrium samples from control women undergoing hysterectomy were included in the study. Paraffin-embedded tissue blocks were cut and stained for immunohistochemistry. The percentage of epithelial cells positively marked was identified digitally after an automated slide scanning process. Mann-Whitney test or Wilcoxon signed-rank test was performed for independent and paired groups, respectively. A lower expression of Drosha was observed in the eutopic endometrium of women with adenomyosis than in the eutopic endometrium of women without the disease (69.9±3.4% vs 85.2±2.9%, respectively) (P=0.016; 95%CI: 3.4 to 27.4%). We also detected lower Drosha expression in the ectopic endometrium of women with adenomyosis than in the eutopic endometrium of the same women (59.6±3.2% vs 69.9±3.4%, respectively) (P=0.004; 95%CI: 2.3 to 16.7%). Additionally, we observed a correlation between Drosha expression in the ectopic and paired eutopic endometrium (P=0.034, rho=0.454). No significant difference in Dicer or Exportin expression was observed. Predominant pattern of cytoplasmic staining for the anti-Drosha antibody and both a nuclear and cytoplasmic pattern for the anti-Exportin antibody were observed. Drosha expression was significantly lower in the endometrium of women with adenomyosis compared to the eutopic endometrium of asymptomatic women without the disease. Furthermore, its expression was lower in the ectopic endometrium but correlated to the paired eutopic endometrium.

2.
Braz. j. med. biol. res ; 50(7): e5782, 2017. graf
Article in English | LILACS | ID: biblio-951699

ABSTRACT

Endometriosis is a benign, estrogen-dependent disease with symptoms such as pelvic pain and infertility, and it is characterized by the ectopic distribution of endometrial tissue. The expression of the ID2, PRELP and SMOC2 genes was compared between the endometrium of women without endometriosis in the proliferative phase of their menstrual cycle and the eutopic and ectopic endometrium of women with endometriosis in the proliferative phase. Paired tissue samples from 20 women were analyzed: 10 from endometrial and peritoneal endometriotic lesions and 10 from endometrial and ovarian endometriotic lesions. As controls, 16 endometrium samples were collected from women without endometriosis in the proliferative phase of menstrual cycle. Analysis was performed by real-time polymerase chain reaction (PCR). There was no significant difference between gene expression in the endometrium of women with and without endometriosis. The ID2 gene expression was increased in the most advanced stage of endometriosis and in ovarian endometriomas, the PRELP was more expressed in peritoneal lesions, and the SMOC2 was highly expressed in both peritoneal and endometrioma lesions. Considering that the genes studied participate either directly or indirectly in cellular processes that can lead to cell migration, angiogenesis, and inappropriate invasion, it is possible that the deregulation of these genes caused the development and maintenance of ectopic tissue.


Subject(s)
Humans , Female , Adolescent , Adult , Young Adult , Peritoneal Diseases/genetics , Glycoproteins/genetics , Osteonectin/genetics , Extracellular Matrix Proteins/genetics , Endometriosis/genetics , Inhibitor of Differentiation Protein 2/genetics , Glycoproteins/metabolism , Case-Control Studies , Gene Expression Regulation , Extracellular Matrix Proteins/metabolism , Endometriosis/metabolism , Inhibitor of Differentiation Protein 2/metabolism , Real-Time Polymerase Chain Reaction , Menstrual Cycle
3.
Braz. j. med. biol. res ; 43(8): 799-805, Aug. 2010. tab, ilus
Article in English | LILACS | ID: lil-554954

ABSTRACT

Endometriosis is a complex and multifactorial disease. Chromosomal imbalance screening in endometriotic tissue can be used to detect hot-spot regions in the search for a possible genetic marker for endometriosis. The objective of the present study was to detect chromosomal imbalances by comparative genomic hybridization (CGH) in ectopic tissue samples from ovarian endometriomas and eutopic tissue from the same patients. We evaluated 10 ovarian endometriotic tissues and 10 eutopic endometrial tissues by metaphase CGH. CGH was prepared with normal and test DNA enzymatically digested, ligated to adaptors and amplified by PCR. A second PCR was performed for DNA labeling. Equal amounts of both normal and test-labeled DNA were hybridized in human normal metaphases. The Isis FISH Imaging System V 5.0 software was used for chromosome analysis. In both eutopic and ectopic groups, 4/10 samples presented chromosomal alterations, mainly chromosomal gains. CGH identified 11q12.3-q13.1, 17p11.1-p12, 17q25.3-qter, and 19p as critical regions. Genomic imbalances in 11q, 17p, 17q, and 19p were detected in normal eutopic and/or ectopic endometrium from women with ovarian endometriosis. These regions contain genes such as POLR2G, MXRA7 and UBA52 involved in biological processes that may lead to the establishment and maintenance of endometriotic implants. This genomic imbalance may affect genes in which dysregulation impacts both eutopic and ectopic endometrium.


Subject(s)
Adult , Female , Humans , Middle Aged , Chromosome Aberrations , DNA , Endometriosis/genetics , Ovarian Diseases/genetics , Endometriosis/pathology , Loss of Heterozygosity , Nucleic Acid Hybridization/genetics , Ovarian Diseases/pathology , Polymerase Chain Reaction
4.
Braz. j. med. biol. res ; 40(6): 793-797, June 2007. ilus
Article in English | LILACS | ID: lil-452679

ABSTRACT

Pregnancy loss can be caused by several factors involved in human reproduction. Although up to 50 percent of cases remain unexplained, it has been postulated that the major cause of failed pregnancy is an error of embryo implantation. Transmembrane mucin-1 (MUC-1) is a glycoprotein expressed on the endometrial cell surface which acts as a barrier to implantation. The gene that codes for this molecule is composed of a polymorphic tandem repeat of 60 nucleotides. Our objective was to determine if MUC-1 genetic polymorphism is associated with implantation failure in patients with a history of recurrent abortion. The study was conducted on 10 women aged 25 to 35 years with no history of successful pregnancy and with a diagnosis of infertility. The control group consisted of 32 patients aged 25 to 35 years who had delivered at least two full-term live children and who had no history of abortions or fetal losses. MUC-1 amplicons were obtained by PCR and observed on agarose and polyacrylamide gel after electrophoresis. Statistical analysis showed no significant difference in the number of MUC-1 variable number of tandem repeats between these groups (P > 0.05). Our results suggest that there is no effect of the polymorphic MUC-1 sequence on the implantation failure. However, the data do not exclude MUC-1 relevance during embryo implantation. The process is related to several associated factors such as the mechanisms of gene expression in the uterus, specific MUC-1 post-translational modifications and appropriate interactions with other molecules during embryo implantation.


Subject(s)
Adult , Female , Humans , Pregnancy , Abortion, Habitual/genetics , /genetics , Embryo Implantation/genetics , Infertility, Female/genetics , Polymorphism, Genetic , Case-Control Studies , Electrophoresis, Polyacrylamide Gel , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL