Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Biomedical Research ; : 206-211, 2013.
Article in English | WPRIM | ID: wpr-52416

ABSTRACT

In this study, characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, traditional Korean fermented food, were examined for investigation of the capacity of potentially probiotic strains. We measured acid, bile, and heat tolerance, adhesive properties to intestinal epithelial cells, and inhibitory activity against pathogens. JW15 could survive at pH 3.0 for 2 hr, but not at pH 2.0. JW15 also showed tolerance to 0.3% oxgall bile salt, and heat tolerance at 70degrees C and 80degrees C for 5 min, respectively. Adhesive ability to Caco-2 cells was similar to that of Lactobacillus rhamnosus GG (LGG), a well-known commercial probiotic. JW15 exhibited antimicrobial activities to pathogenic bacteria such as Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella enteritidis. The immuno-modulatory effects of JW15 were compared with those of LGG, a well-known immune enhancer. For analysis, production of nitric oxide (NO), NF-kappaB (Nuclear factor kappaB), Interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) was measured. The concentration of NO induced by JW15 was higher than that by LGG at low concentration (1 x 10(7) cfu/mL). Low and high (5 x 10(7) CFU/mL) concentration of JW15 induced statistically higher production of NF-kappaB, IL-1beta, and TNF-alpha than that produced by LGG, respectively. In conclusion, Weissella cibaria JW15 had ability as a probiotic strain, including acid, bile, and heat tolerance, adhesive properties to intestinal epithelial cells, and inhibitory activity against pathogens. In addition, JW15 showed better immuno-modulatory effects than LGG when NO, NF-kappaB, IL-1beta, and TNF-alpha were measured. According to these results, the characteristics and immunomodulating activity of Weissella cibaria JW15 are suitable for consideration as a potential probiotic.


Subject(s)
Humans , Adhesives , Bacteria , Bile , Caco-2 Cells , Epithelial Cells , Escherichia coli , Hot Temperature , Hydrogen-Ion Concentration , Interleukin-1beta , Korea , Lacticaseibacillus rhamnosus , Listeria monocytogenes , NF-kappa B , Nitric Oxide , Probiotics , Salmonella enteritidis , Staphylococcus aureus , Tumor Necrosis Factor-alpha , Weissella
2.
The Korean Journal of Nutrition ; : 14-22, 2009.
Article in Korean | WPRIM | ID: wpr-655249

ABSTRACT

This study was conducted to investigate the effects of powdered young barley leaf and its water extract on body weight and lipid metabolism in high-fat fed mice. Male mice were divided into normal group, high-fat (HF) group, highfat group supplemented with powdered young barley leaf (HF-YBL) and high-fat group supplemented with water extract of the powdered young barley leaf (HF-WYBL). The powdered young barley leaf or its water extract was added to a standard diet based on 1% dried young barley leaf (1 g YBL/100 diet and 0.28 g WYBL/100 g diet) for 8 weeks. Supplementation of YBL and WYBL significantly reduced body weight and epididymal adipose tissue weight in highfat fed mice. Food intake and daily energy intake were significantly lower in the YBL group than in the HF group. After 8 weeks, plasma triglyceride and cholesterol concentrations were significantly higher in the HF group than in the Normal group; however, both YBL and WYBL significantly lowered those of the high-fat fed mice. The ratio of HDL-cholesterol/ total cholesterol of the YBL and WYBL groups were significantly elevated compared to that of HF group. Both YBL and WYBL significantly increased fecal excretion of triglyceride in high-fat fed mice, whereas they did not affect fecal cholesterol concentration. The triglyceride levels of liver, adipose tissue and heart were significantly lower in the YBL and WYBL groups than in the HF group. Supplementation of WYBL also lowered the kidney triglyceride and heart cholesterol concentrations compared to those of HF group. Hepatic lipid regulating enzyme activities, fatty acid synthase, HMG-CoA reductase and acyl-coenzyme A: cholesterol acyltransferase, were significantly lower in the YBL and WYBL groups than in the HF group. Accordingly, these results suggest that YBL and WYBL improve plasma and organ lipid levels partly by increasing fecal lipid excretion and inhibiting fatty acid and cholesterol biosynthesis in the liver.


Subject(s)
Animals , Humans , Male , Mice , Acyl Coenzyme A , Adipose Tissue , Body Weight , Cholesterol , Diet , Diet, High-Fat , Eating , Energy Intake , Fatty Acid Synthases , Heart , Hordeum , Kidney , Lipid Metabolism , Liver , Oxidoreductases , Plasma , Sterol O-Acyltransferase , Water
SELECTION OF CITATIONS
SEARCH DETAIL