Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Acta Physiologica Sinica ; (6): 39-46, 2022.
Article in Chinese | WPRIM | ID: wpr-927579

ABSTRACT

Acute kidney injury (AKI) is a common clinical syndrome and an independent risk factor of chronic kidney disease and end-stage renal failure. At present, the treatments of AKI are still very limited and the morbidity and mortality of AKI are rising. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs (circRNAs), are RNAs that are transcribed from the genome, but not translated into proteins. It has been widely reported that ncRNA is involved in AKI caused by ischemia reperfusion injury (IRI), drugs and sepsis through different molecular biological mechanisms, such as apoptosis and oxidative stress response. Therefore, ncRNAs are expected to become a new target for clinical prevention and treatment of AKI and a new biomarker for early warning of the occurrence and prognosis of AKI. Here, the role and mechanism of ncRNA in AKI and the research progress of ncRNA as biomarkers are reviewed.


Subject(s)
Humans , Acute Kidney Injury/metabolism , MicroRNAs/metabolism , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , Reperfusion Injury/genetics
2.
Chinese Medical Journal ; (24): 3166-3170, 2012.
Article in English | WPRIM | ID: wpr-316549

ABSTRACT

<p><b>BACKGROUND</b>Volatile anesthetics (VAs) may affect varied and complex physiology processes by manipulating Ca(2+)-calmodulin (CaM). However, the detailed mechanism about the action of VAs on CaM has not been elucidated. This study was undertaken to examine the effects of VAs on the conformational change, hydrophobic site, and downstream signaling pathway of CaM, to explore the possible mechanism of anesthetic action of VAs.</p><p><b>METHODS</b>Real-time second-harmonic generation (SHG) was performed to monitor the conformational change of CaM in the presence of VAs, each plus 100 µmol/L Ca(2+). A hydrophobic fluorescence indicator, 8-anilinonaphthalene-1-sulfonate (ANS), was utilized to define whether the VAs would interact with CaM at the hydrophobic site or not. High-performance liquid chromatography (HPLC) was carried out to analyze the activity of CaM-dependent phosphodiesterase (PDE1) in the presence of VAs. The VAs studied were ether, enflurane, isoflurane, and sevoflurane, with their aqueous concentrations 7.6, 9.5, 11.4 mmol/L; 0.42, 0.52, 0.62 mmol/L; 0.25, 0.31, 0.37 mmol/L and 0.47, 0.59, 0.71 mmol/L respectively, each were equivalent to their 0.8, 1.0 and 1.2 concentration for 50% of maximal effect (EC50) for general anesthesia.</p><p><b>RESULTS</b>The second-harmonic radiation of CaM in the presence of Ca(2+) was largely inhibited by the VAs. The fluorescence intensity of ANS, generated by binding of Ca(2+) to CaM, was reversed by the VAs. HPLC results also showed that AMP, the product of the hydrolysis of cAMP by CaM-dependent PDE1, was reduced by the VAs.</p><p><b>CONCLUSIONS</b>Our findings demonstrate that the above VAs interact with the hydrophobic core of Ca(2+)-CaM and the interaction results in the inhibition of the conformational change and activity of CaM. This in vitro study may provide us insight into the possible mechanism of anesthetic action of VAs in vivo.</p>


Subject(s)
Humans , Adenosine Monophosphate , Anesthetics, Inhalation , Pharmacology , Anilino Naphthalenesulfonates , Calmodulin , Chemistry , Physiology , Cyclic Nucleotide Phosphodiesterases, Type 1 , Fluorescence , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL