Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-155299

ABSTRACT

Background & objectives: Multidrug-resistance of methicillin-resistant Staphylococcus aureus (MRSA) is a serious therapeutical problem. Chalcones belong to a group of naturally occurring flavonoids, usually found in various plant species, and have potent antibacterial, antiviral and antifungal activities. The goal of this study was to evaluate the antibacterial effect of three newly-synthesized chalcones against clinical isolates of MRSA, and their synergism with β-lactam and non- β-lactam antibiotics. Methods: Antimicrobial activity of the three newly-synthesized chalcones was tested against 19 clinical isolates of MRSA and a laboratory control strain of MRSA (ATCC 43300). The synergism with β-lactams: cefotaxime (CFX), ceftriaxone (CTX), and non-β-lactam antibiotics: ciprofloxacin (CIP), gentamicin (GEN) and trimethoprim/sulphamethoxazole (TMP-SMX) was investigated by checkerboard method. Results: All evaluated compounds showed significant anti-MRSA activity with MIC values from 25-200 μg/ml. Observed synergism with antibiotics demonstrated that chalcones significantly enhanced the efficacy of CIP, GEN and TMP-SMX. Interpretation & conclusions: oOur study demonstrated that three newly-synthesized chalcones exhibited significant anti-MRSA effect and synergism with non-β-lactam antibiotics. The most effective compound was 1,3-Bis-(2-hydroxy-phenyl)-propenone. Our results provide useful information for future research of possible application of chalcones in combination with conventional anti-MRSA therapy as promising new antimicrobial agents.

2.
Braz. j. microbiol ; 45(1): 263-270, 2014. tab
Article in English | LILACS | ID: lil-709487

ABSTRACT

Biofilm formation and adherence of bacteria to host tissue are one of the most important virulence factors of methicillin-resistant strains of Staphylococcus aureus (MRSA). The number of resistant strains is seriously increasing during the past years and bacteria have become resistant, not only to methicillin, but also to other commonly used antistaphylococcal antibiotics. There is a great need for discovering a novel antimicrobial agent for the treatment of staphylococcal infections. One of the most promising groups of compounds appears to be chalcones. In present study we evaluated the in vitro effect of three newly synthesized chalcones: 1,3-Bis-(2-hydroxy-phenyl)-propenone, 3-(3Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propenone and 3-(4-Hydroxy-phenyl)-1-(2-hydroxyphenyl)-propenone on glycocalyx production, biofilm formation and adherence to human fibronectin of clinical isolates and laboratory control strain of MRSA (ATCC 43300). Subinhibitory concentrations of the tested compounds reduced the production of glycocalyx, biofilm formation and adherence to human fibronectin of all MRSA strains. Inhibition of biofilm formation was dose dependent and the most effective was 1,3-Bis-(2-hydroxy-phenyl)-propenone. In our study we demonstrated that three newly-synthesized chalcones exhibited significant effect on adherence and biofilm formation of MRSA strains. Chalcones may be considered as promising new antimicrobial agents that can be used for prevention of staphylococcal infections or as adjunct to antibiotics in conventional therapy.


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Chalcones/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Bacterial Adhesion/drug effects , Biofilms/growth & development , Chalcones/chemical synthesis , Dose-Response Relationship, Drug , Fibronectins/metabolism , Glycocalyx/metabolism , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/physiology , Structure-Activity Relationship , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL