Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 223-227, 2012.
Article in Chinese | WPRIM | ID: wpr-672532

ABSTRACT

Objective: To establish a polymerase chain reaction (PCR) technique based on cytochrome b (cytb) gene of mitochondria DNA (mtDNA) for blood meal identification. Methods: The PCR technique was established based on published information and validated using blood sample of laboratory animals of which their whole gene sequences are available in GenBank. PCR was next performed to compile gene sequences of different species of wild rodents. The primers used were complementary to the conserved region of the cytb gene of vertebrate’s mtDNA. A total of 100 blood samples, both from laboratory animals and wild rodents were collected and analyzed. The obtained unknown sequences were compared with those in the GenBank database using BLAST program to identify the vertebrate animal species. Results: Gene sequences of 11 species of wild animals caught in 9 localities of Peninsular Malaysia were compiled using the established PCR. The animals involved were Rattus (rattus) tanezumi, Rattus tiomanicus, Leopoldamys sabanus,Tupaia glis, Tupaia minor, Niviventor cremoriventor, Rhinosciurus laticaudatus, Callosciurus caniseps, Sundamys muelleri, Rattus rajah and Maxomys whiteheadi. The BLAST results confirmed the host with exact or nearly exact matches (>89% identity). Ten new gene sequences have been deposited in GenBank database since September 2010. Conclusions: This study indicates that the PCR direct sequencing system using universal primer sets for vertebrate cytb gene is a promising technique for blood meal identification.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 156-158, 2012.
Article in Chinese | WPRIM | ID: wpr-672485

ABSTRACT

Objective:To investigate the short and long term efficacy of a commercial air ionizer in killing Dermatophagoides pteronyssinus (D. pteronyssinus) and Dermatophagoides farinae (D. farinae) mites. Methods: The effect of a commercial ionizer on D. pteronyssinus and D. farinae was evaluated in the laboratory, using a specially designed test. Mortality was assessed after 6, 16 and 24 hours for direct exposure and after 24, 36, 48, 60 and 72 hours for exposure in simulated mattress. New batches of mites were used for each exposure time. Results: LT50 for direct exposure of ionizer was 10 hours for D. pteronyssinus and 18 hours for D. farinae. The LT50 for exposure in simulated mattress was 132 hours or 5.5 days for D. pteronyssinus and 72 hours or 3 days for D. farinae. LT95 for direct exposure of ionizer was 36 hours for D. pteronyssinus and D. farinae. Meanwhile, the LT95 for exposure in simulated mattress was 956 hours or 39.8 days for D. pteronyssinus and 403 hours or 16.8 days for D. farinae. Conclusions:This study demonstrates the increasing mite mortalities with increasing exposure time of a commercial ionizer and suggests that negative ions produced by an ionizer kill dust mites and can be used to reduce natural mite populations on exposed surfaces such as floors, clothes, curtains, etc. However, there is reduced efficacy on mites inside stuffed materials as in mattresses and furniture.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): 365-369, 2011.
Article in Chinese | WPRIM | ID: wpr-672807

ABSTRACT

Objective: To examine the acaricidal effects of the essential oil of Cymbopogon citratus leaf extract (lemongrass) and ethanolic Azadirachta indica leaf extract (neem) against house dust mites Dermatophagoides farinae (D. farinae) and Dermatophagoides pteronyssinus (D. pteronyssinus). Methods: Twenty-five adults mites were placed onto treated filter paper that is soaked with plant extract and been tested at different concentrations (50.00%, 25.00%, 12.50%, 6.25% and 3.13%) and exposure times (24hrs, 48hrs, 72hrs and 96 hrs). All treatments were replicated 7 times, and the experiment repeated once. The topical and contact activities of the two herbs were investigated.Results:Mortalities from lemongrass extract were higher than neem for both topical and contact activities. At 50 % concentration, both 24 hrs topical and contact exposures to lemongrass resulted in more than 91% mortalities for both species of mites. At the same concentration and exposure time, neem resulted in topical mortalities of 40.3% and 15.7% against D. pteronyssinus and D.farinae respectively; contact mortalities were 8.0% and 8.9% against the 2 mites, respectively. There was no difference in topical mortalities of D. pteronyssinus from exposure to concentrations of lemongrass and neem up to 12.50%; lemongrass was more effective than neem at the higher concentrations. Conclusions: Generally, topical mortalities of D. farinae due to lemongrass are higher than that due to neem. Contact mortalities of lemongrass are always higher that neem against both species of mites.

SELECTION OF CITATIONS
SEARCH DETAIL