Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Third Military Medical University ; (24): 440-442, 2001.
Article in Chinese | WPRIM | ID: wpr-736997

ABSTRACT

Objective To explore the relationship between hemolymph phenol oxidase and the melanization of Plasmodium yoelii oocysts in Anopheles dirus. Methods An Anopheles dirus-Plasmodium yoelii system was used Anopheles dirus were divided into 3 groups, that is, non-blood-fedding (N), normal-blood-fedding (B) and infected-blood-fedding (I). The activities of MPO and o-DPO in hemolymph from 3 groups were determined with native polyacrylamide gel electrophoresis (PAGE) and density scanning at 5, 7, 11 and 15 d after blood feeding. Results Both MPO and o-DPO activity were significantly higher in group I than group N and B (P<0.05). But with the melanization of Plasmodium yoelii oocysts, both MPO and o-DPO activity in group I were decreased in comparison with group N, especially on the 15 th day after infected-blood feeding. MPO and o-DPO activity in group B were significantly stronger than those of group N. Conclusion Blood feeding and infection of Plasmodium yoelii both can activate the cascade. The heamolymph phenol oxidase may play an important role in the melanization of Plasmodium yoelii oocysts in Anopheles dirus.

2.
Journal of Third Military Medical University ; (24): 440-442, 2001.
Article in Chinese | WPRIM | ID: wpr-735529

ABSTRACT

Objective To explore the relationship between hemolymph phenol oxidase and the melanization of Plasmodium yoelii oocysts in Anopheles dirus. Methods An Anopheles dirus-Plasmodium yoelii system was used Anopheles dirus were divided into 3 groups, that is, non-blood-fedding (N), normal-blood-fedding (B) and infected-blood-fedding (I). The activities of MPO and o-DPO in hemolymph from 3 groups were determined with native polyacrylamide gel electrophoresis (PAGE) and density scanning at 5, 7, 11 and 15 d after blood feeding. Results Both MPO and o-DPO activity were significantly higher in group I than group N and B (P<0.05). But with the melanization of Plasmodium yoelii oocysts, both MPO and o-DPO activity in group I were decreased in comparison with group N, especially on the 15 th day after infected-blood feeding. MPO and o-DPO activity in group B were significantly stronger than those of group N. Conclusion Blood feeding and infection of Plasmodium yoelii both can activate the cascade. The heamolymph phenol oxidase may play an important role in the melanization of Plasmodium yoelii oocysts in Anopheles dirus.

SELECTION OF CITATIONS
SEARCH DETAIL