Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 2190-2203, 2023.
Article in Chinese | WPRIM | ID: wpr-981197

ABSTRACT

Abscisic acid, a plant hormone that inhibits growth, is a key factor in balancing plant endogenous hormones and regulating growth and metabolism. Abscisic acid can improve the drought resistance and salt tolerance of crops, reduce fruit browning, reduce the incidence rate of malaria and stimulate insulin secretion, so it has a broad application potential in agriculture and medicine. Compared with traditional plant extraction and chemical synthesis, abscisic acid synthesis by microorganisms is an economic and sustainable route. At present, a lot of progress has been made in the synthesis of abscisic acid by natural microorganisms such as Botrytis cinerea and Cercospora rosea, while the research on the synthesis of abscisic acid by engineered microorganisms is rarely reported. Saccharomyces cerevisiae, Yarrowia lipolytica and Escherichia coli are common hosts for heterologous synthesis of natural products due to their advantages of clear genetic background, easy operation and friendliness for industrial production. Therefore, the heterologous synthesis of abscisic acid by microorganisms is a more promising production method. The author reviews the research on the heterologous synthesis of abscisic acid by microorganisms from five aspects: selection of chassis cells, screening and expression enhancement of key enzymes, regulation of cofactors, enhancement of precursor supply and promotion of abscisic acid efflux. Finally, the future development direction of this field is prospected.


Subject(s)
Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Yarrowia/metabolism
2.
Journal of Biomedical Engineering ; (6): 1090-1096, 2014.
Article in Chinese | WPRIM | ID: wpr-234452

ABSTRACT

An important index determination for clinical diagnosis of renal function is to assay the creatinine concentration in serum. In the analytical process applied with coupled-enzyme, the quality control of sarcosine oxidase (SOX) as a key enzyme is the first problem to be solved. In order to establish an efficient and laboratory-scale production of SOX, the recombinant sarcosine oxidase (r-SOX) gene was a high-level expression in E. coli induced with lactose on a large-scale fermentation in 300 L fermenter. The results suggested that the biomass concentration reached OD600 of 22 and the expression of recombinant sarcosine oxidase in E. coli accounted for about 25% of total soluble protein in culture after fermentation. The cell-free extract obtained from high pressure homogenizer was processed by selective thermal denaturation and then purified with Ni-Sepharose FF chromatography. The sarcosine oxidase with 97% purity, 25 U/mg specific activity and 92.4% activity recovery was obtained. The molecular weight with single peptide chain of 53 kD and 55 kD of recombinant sarcosine oxidase was assessed by SDS-PAGE in presence or absence of 2-mercaptoehanol and Sephacryl S-200 chromatography. This sarcosine oxidase was found to be a conjugated protein, yellow enzyme, which combined with FAD as prosthetic group by covalent linkage. The contaminant of catalase was not detected in the sample pool of this enzyme. In addition, a further test to the thermal stability of sarcosine oxidase was done. According to the above results, the development and utilization of this enzyme has been set up on a reliable foundation.


Subject(s)
Escherichia coli , Fermentation , Recombinant Proteins , Sarcosine Oxidase
SELECTION OF CITATIONS
SEARCH DETAIL