Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 158-163, 2014.
Article in Chinese | WPRIM | ID: wpr-500487

ABSTRACT

Objective: To evaluate the effect of Shin-I essential oil inhalation on blood lactate changes in rats subjected to treadmill exercise.Methods: Adult male Sprague Dawley rats (n=12) were randomly divided into the control or the Shin-I group. Rats were subjected to a treadmill exercise program (15 m/min for 30 min). After exercise, rats were exposed to 200 μL of water or Shin-I essential oil, respectively, using a nebulizer for 180 min during the recovery period. Blood samples were collected every 15 min. Blood glucose and lactate concentrations were determined in a CMA 600 analyzer.Results: The basal glucose and lactate levels were no significantly different between two groups. After exercise, glucose levels were slightly increased to about 110%-120% of the basal level in both groups. Lactate levels of both groups reached to 110%-140% of basal levels during exercise. In the recovery period, lactate levels further increased to 180% of the basal level and were maintained at a plateau in the control group. However, lactate levels gradually decreased to 60%-65% of the basal level in the Shin-I group. Lactate clearance was significantly enhanced after Shin-I essential oil inhalation.Conclusions: Our results provide evidence that Shin-I essential oil inhalation may accelerate recovery after exercise in rats.

2.
Chinese Journal of Biotechnology ; (12): 1464-1472, 2014.
Article in Chinese | WPRIM | ID: wpr-345578

ABSTRACT

Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.


Subject(s)
Humans , Acetyltransferases , Genetics , Metabolism , Arachidonic Acid , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acid Desaturases , Genetics , Metabolism , Fatty Acid Synthases , Genetics , Metabolism , Fatty Acids, Unsaturated , Genetic Vectors , HEK293 Cells , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL