Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Herbal Medicines ; (4): 82-93, 2024.
Article in English | WPRIM | ID: wpr-1010743

ABSTRACT

OBJECTIVE@#Hepatic fibrosis has been widely considered as a conjoint consequence of almost all chronic liver diseases. Chuanxiong Rhizoma (Chuanxiong in Chinese, CX) is a traditional Chinese herbal product to prevent cerebrovascular, gynecologic and hepatic diseases. Our previous study found that CX extracts significantly reduced collagen contraction force of hepatic stellate cells (HSCs). Here, this study aimed to compare the protection of different CX extracts on bile duct ligation (BDL)-induced liver fibrosis and investigate plausible underlying mechanisms.@*METHODS@#The active compounds of CX extracts were identified by high performance liquid chromatography (HPLC). Network pharmacology was used to determine potential targets of CX against hepatic fibrosis. Bile duct hyperplasia and liver fibrosis were evaluated by serologic testing and histopathological evaluation. The expression of targets of interest was determined by quantitative real-time PCR (qPCR) and Western blot.@*RESULTS@#Different CX extracts were identified by tetramethylpyrazine, ferulic acid and senkyunolide A. Based on the network pharmacological analysis, 42 overlap targets were obtained via merging the candidates targets of CX and liver fibrosis. Different aqueous, alkaloid and phthalide extracts of CX (CXAE, CXAL and CXPHL) significantly inhibited diffuse severe bile duct hyperplasia and thus suppressed hepatic fibrosis by decreasing CCCTC binding factor (CTCF)-c-MYC-long non-coding RNA H19 (H19) pathway in the BDL-induced mouse model. Meanwhile, CX extracts, especially CXAL and CXPHL also suppressed CTCF-c-MYC-H19 pathway and inhibited ductular reaction in cholangiocytes stimulated with taurocholate acid (TCA), lithocholic acid (LCA) and transforming growth factor beta (TGF-β), as illustrated by decreased bile duct proliferation markers.@*CONCLUSION@#Our data supported that different CX extracts, especially CXAL and CXPHL significantly alleviated hepatic fibrosis and bile duct hyperplasia via inhibiting CTCF-c-MYC-H19 pathway, providing novel insights into the anti-fibrotic mechanism of CX.

2.
Chinese Herbal Medicines ; (4): 421-429, 2023.
Article in English | WPRIM | ID: wpr-982521

ABSTRACT

OBJECTIVE@#Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD).@*METHODS@#High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism.@*RESULTS@#Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5).@*CONCLUSION@#Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.

3.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 694-709, 2023.
Article in English | WPRIM | ID: wpr-1010982

ABSTRACT

Chuanxiong Rhizoma (CX, the dried rhizome of Ligusticum wallichii Franch.), a well-known traditional Chinese medicine, is clinically used for treating cardiovascular, cerebrovascular and hepatobiliary diseases. Cholestatic liver damage is one of the chronic liver diseases with limited effective therapeutic strategies. Currently, little is known about the mechanism links between CX-induced anti-cholestatic action and intercellular communication between cholangiocytes and hepatic stellate cells (HSCs). The study aimed to evaluate the hepatoprotective activity of different CX extracts including the aqueous, alkaloid, phenolic acid and phthalide extracts of CX (CXAE, CXAL, CXPA and CXPHL) and investigate the intercellular communication-related mechanisms by which the most effective extracts work on cholestatic liver injury. The active compounds of different CX extracts were identified by UPLC-MS/MS. A cholestatic liver injury mouse model induced by bile duct ligation (BDL), and transforming growth factor-β (TGF-β)-treated human intrahepatic biliary epithelial cholangiocytes (HIBECs) and HSC cell line (LX-2 cells) were used for in vivo and in vitro studies. Histological and other biological techniques were also applied. The results indicated that CXAE, CXAL and CXPHL significantly reduced ductular reaction (DR) and improved liver fibrosis in the BDL mice. Meanwhile, both CXAE and CXPHL suppressed DR in injured HIBECs and reduced collagen contraction force and the expression of fibrosis biomarkers in LX-2 cells treated with TGF-β. CXPHL suppressed the transcription and transfer of plasminogen activator inhibitor-1 (PAI-1) and fibronectin (FN) from the 'DR-like' cholangiocytes to activated HSCs. Mechanistically, the inhibition of PAI-1 and FN by CXPHL was attributed to the untight combination of the acetyltransferase KAT2A and SMAD3, followdd by the suppression of histone 3 lysine 9 acetylation (H3K9ac)-mediated transcription in cholangiocytes. In conclusion, CXPHL exerts stronger anti-cholestatic activity in vivo and in vitro than other CX extracts, and its protective effect on the intracellular communication between cholangiocytes and HSCs is achieved by reducing KAT2A/H3K9ac-mediated transcription and release of PAI-1 and FN.

SELECTION OF CITATIONS
SEARCH DETAIL